Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.schools.keldysh.ru/co1678/Project/Biovirus/sod9.htm
Дата изменения: Mon Mar 14 09:14:12 2005 Дата индексирования: Sat Dec 22 02:09:44 2007 Кодировка: Поисковые слова: п п п п п п п п п п п п п п п п п п п п п п п п п п |
Инфекционная единица
Наименьшее количество вируса, способное в данном опыте вызвать инфекцию, называется инфекционной единицей.
Для ее определения применяются обычно два метода. Первый основан на определении 50 %-ной летальной дозы, которая обозначается LD 50 (от лат. Letatis - смертельная, dosis - доза). Второй метод устанавливает число инфекционных единиц по числу бляшек, образовавшихся в культуре клеток.
Что, в сущности, представляет собой величина LD 50 и как она определяется? Исследуемый вирусный материал разводится в соответствии со снижающимися степенями концентрации, скажем кратными десяти: 1:10; 1:100; 1:1000 и т.д. Каждым из растворов с указанными концентрациями вируса инфицируют группу животных (десять индивидуумов) или культуру клеток в пробирках. Потом наблюдают гибель животных или изменения, происшедшие в культуре под влиянием вируса. Статистическим методом определяется степень концентрации, способная умертвить 50 % животных из числа зараженных исходным материалом. При использовании культуры клеток следует найти такую дозу вируса, которая производит губительное действие на 50 % инфицированных ею культур. В этом случае употребляется сокращение ЦПД 50 (цитопатическая доза). Иначе говоря, речь идет о такой дозе вируса, которая вызывает повреждение или гибель половины инфицированных ею культур.
Методом бляшек нельзя получить статистические данные, но можно установить фактическое число единиц вируса в материале, дающем бляшки в культуре клеток. В идеальном случае такая единица отвечает одной функционально полноценной частице.
Титрование
Индуцируемая вирусом реакция может происходить по типу «все или ничего» (то есть наличие или отсутствие инфекции), а может быть выражена количественно, например продолжительностью времени, необходимого проявления инфекции, или числом поражений в слое чувствительных клеток. Количественное определение вирусной активности называется титрованием. Титр исходной вирусной суспензии выражается числом инфекционных единиц, приходящихся на единицу объема. Инфекционные нуклеиновые кислоты, независимо от того выделены ли они из фагов или из вирусов животных или растений, как правило, обладают значительно меньшим инфекционным титром, чем исходный вирус (то есть отношение числа содержащихся в препарате молекул нуклеиновой кислоты к числу инфекционных единиц значительно больше, чем соответствующие величины для вирионов, из которых эти нуклеиновые кислоты были выделены). Однако и при титровании свободной нуклеиновой кислоты и при титровании вирионов вероятность нахождения в пробе среднего числа частиц выражается одной формулой. Отсюда следует, что вирусную инфекцию может вызвать также и одна молекула вирусной нуклеиновой кислоты. Как правило, инфекционными являются только интактные вирусные ДНК и РНК. Исключение наблюдается при множественном заражении клеток молекулами нуклеиновой кислоты, содержащими неполным геном вируса.
Резюмируя сказанное, можно прийти к выводу, что титр вирусной суспензии, выраженный числом инфекционных единиц, содержащихся в единице объема, как правило, соответствует числу вирионов (или числу молекул вирусной нуклеиновой кислоты), способных при условиях данного опыта вызвать инфекцию.
Общие методы изучения вирусов
О присутствии вируса в организме как при спонтанном заболевании, так и при экспериментальном заражении хозяина судят по появлению тех или иных патологических симптомов. Всякий раз, когда возникает подозрение о присутствии вируса в изучаемом объекте, приходится подбирать определенный комплекс условий - подходящий организм и соответствующий способ заражения, - при котором вирус вызывает в зараженном организме распознаваемые изменения. Так что вирусологам приходится затрачивать большие усилия на разработку методов получения экспериментальных инфекций.
Как известно, для доказательства того ,что данное заболевание действительно вызывается определенным микроорганизмом, необходимо выполнить так называемые постулаты Коха: 1) показать, что данный микроорганизм регулярно обнаруживается в больном организме; 2) получить культуру этого микроорганизма на искусственной питательной среде; 3) воспроизвести данное заболевание заражением экспериментального животного выделенной культурой и, наконец, ;4) повторно выделить данный микроорганизм, но теперь уже из организма искусственно зараженного хозяина. Те же постулаты mutatis mutandis справедливы и для диагностики вирусных заболеваний. В этом случае, согласно Риверсу, постулаты формируются следующим образом: 1) выделение вируса из организма больного, 2) культивирование вируса в организме или в клетках экспериментального животного, 3) доказательство фильтруемости инфекционного агента (чтобы исключить патогенные агенты большего размера, например бактерии), 4) воспроизведение подобного заболевания у другого представителя данного или родственного вида и, наконец, 5) повторное выделение того же вируса.
Культивирование и идентификация вирусов - основные вирусологические методы, используемые в практической вирусологии при диагностике вирусных заболеваний. Материал, в котором подозревается наличие вируса, например лизат бактерий, кусочек ткани или биологическая жидкость, при необходимости измельчают или гомогенезируют с тем, чтобы при контролируемых условиях перевести его в суспензированное состояние.
Большие фрагменты клеток, а также возможные загрязняющие материал микроорганизмы удаляют при помощи центрифугирования и фильтрования. Такую очищенную суспензию вводят подходящему хозяину, либо добавляют к суспензии клеток, либо наносят на монослой соответствующих клеток. В результате в слое чувствительных клеток, таких, как бактерии, растущие в чашке с агаром, или клетки животных, растущие на поверхности стекла, могут появиться локальные поражения, так называемые бляшки, которые характерны для данного вируса.. Бляшки образуются в результате заражения расположенных в данной области клеток, размножения в них вируса и их полного или частичного лизиса. Если размножение вируса не ведет к образованию визуально выявляемых дискретных бляшек, вирус может быть обнаружен и охарактеризован по изменениям, вызываемым им в культуре клеток, или по повреждению слоя клеток либо при помощи других тестов.
Если исследуемый материал не наносят на слой культивируемых клеток, а вводят в организм хозяина, то цель эксперимента - выявление общих реакций организма, свидетельствующих о развитии инфекции: появление симптомов заболевания, гибель животного или какие-либо иные специфические реакции, например образование антител.
Наконец, если ни заражение культуры клеток, ни введение материала в организм хозяина не ведут к появлению каких-либо симптомов вирусной инфекции, вирусологи прибегают к так называемым «слепым пассажам», т.е. к повторным переносам исследуемого материала, что часто приводит к повышению вирулентности вируса или к увеличению его титра.
Бактерии.
Бактерии - широко распространенная в природе группа одноклеточных
микроорганизмов с примитивной формой клеточной организации.
Интенсивное изучение биологических свойств бактерий и их рали в
биосфере началось в середине 19 в., когда появились работы французс-
кого ученого Л. Пастера, немецкого ученого Р. Коха и английского
ученого Д. Листера.
Большинство бактерий не имеют хлорофилла, то есть они не использу-
ют солнечную энергию в процессе обмена веществ, а получают энергию в
результате химических превращений неорганических или органических
соединений, имеющихся в среде их обитания. Бактерии широко распрост-
ранены в природе: их находят в почве, в воде, в растениях, в орга-
низме человека и животных. Они могут существовать в самых разных ус-
ловиях, часто неблагоприятных для жизни других организмов. Бактерии
играют огромную роль в формировании биосферы, в поддержании жизни на
нашей планеты, участвуя в круговороте энергии и веществ в природе.
Среди бактерий имеется относительно небольшое видов, способных вы-
зывать болезни человека, животных и растений. Потенциальная способ-
ность бактерий вызывать инфекционные заболевания называется болез-
нетворностью, или патогенностью. Некоторые бактерии являются условно
патогенными, так как их болезнетворность зависит от ряда условий, в
первую очередь от сопротивляемости организма, в котором эти бактерии
находятся.
2.1 ї_Строение бактерий.
По форме бактерии делятся на три группы (рис. 3): шаровидные (кок-
ки), палочковидные (бактерии и бациллы) и извитые (вибрионы, спирил-
лы).
Размеры палочковидных бактерий могут быть от 1 до 8 микрометров
(мкм) в длину и от 0,5 до 2 мкм в ширину; средний диаметр шаровидных
0,5-1 мкм (1 мкм равен тысячной доле миллиметра).
Основные структурные элементы бактериальной клетки: оболочка, ци-
топлазма, нуклеоид (рис. 4). Содержимое ее тела - протоплазма -
представляет собой желеобразный, вязкий раствор, в котором растворе-
ны различные органические и неорганические соединения и находится
- 8 -
множество мелких гранул.
Протоплазма, окруженная тонкой эластичной мембраной, образует про-
топласт. Толщина мембраны 7-10 нанометров (1 нм равен миллионной до-
кишечная палочка
ли миллиметра). Ее основной компонент - сложные вещества, состоящие
из белков и жиров. Цитоплазматическая мембрана выполняет функцию мо-
лекулярного "сита": пропуская воду и небольшие молекулы некоторых
жирорастворимых веществ, она не пропускает другие низкомолекулярные
соединения, что поддерживает стабильность химического состава про-
топлазмы и защищает бактериальную клетку от попадания в нее вредных
веществ.
Снаружи цитоплазматическая мембрана окружена клеточной стенкой,
обеспечивающей постоянство форы бактерии. Эта стенка толще мембраны
(10-25 нм) и значительно прочнее ее. Она имеет эластичные поры диа-
метром 1 нм, через которые свободно протекают относительно крупные
молекулы. Целостность клеточной стенки обеспечивает нормальную жиз-
недеятельность бактерии. Ее ослабление или разрушение приводит к
проникновению в бактериальную клетку воды из окружающей среды, ее
набуханию, а затем к разрыву цитоплазматической мембраны и вытеканию
содержимого протоплазмы. Этот процесс разрушения бактерии называется
лизисом. Основной компонент стенки - сложное соединение пептидогли-
кан, молекулы которого связаны друг с другом с помощью белковых мос-
тиков и образуют полимерную структуру.
Кроме цитоплазматической мембраны и клеточной стенки, многие бак-
терии окружены капсулой толщиной 0,2 мкм, представляющей собой отно-
сительно плотный, желатинообразный материал, непосредственно приле-
гающей к клеточной стенки. Главный химический компонент капсулы -
полисахарид. Есть основание считать, что капсула защищает клетку от
действия антибактериальных агентов, способных повредить ее стенку. У
некоторых патогенных бактерий (возбудителей сибирской язвы и чумы)
капсула содержит вещества, защищающие бактериальную клетку от фаго-
цитоза. Следовательно, капсулу у некоторых бактерий можно рассматри-
вать как один из факторов, определяющих их болезнетворность.
В отличие от клеток высших организмов в бактериальной клетке от-
сутствует дифференцируемое ядро, отделенное от цитоплазмы ядерной
- 9 -
мембраной. Его функции осуществляет находящийся в протоплазме нукле-
оид, представляющий собой замкнутую в кольцо двунитчатую спираль мо-
лекулу дезоксирибонуклеиновой кислоты - ДНК, свернутую в виде клуб-
ка. Функция молекулы ДНК бактерий аналогична функции хромосомы кле-
ток высших организмов, то есть в ней сосредоточена генетическая ин-
формация данной бактерии. Ядерное вещество легко обнаруживается при
электронной микроскопии ультратонких срезов бактерий.
В цитоплазме бактерии находится до 10 тысяч рибосом, представляю-
щих собой мелкие гранулы диаметром около 20 нм, с помощью которых в
бактериальной клетке осуществляется синтез белка. В ней содержатся
также различные включения (жиры, крахмал, гликоген, сера) - запас
питательных веществ, используемых бактерией.
Многие бактерии способны активно двигаться с помощью жгутиков,
своеобразных органов движения. Число жгутиков на поверхности клетки
колеблется от 1 до нескольких десятков. Способность бактерий к ак-
тивному движению, вероятно, помогает им быстрее поглощать вещества в
Фаг с освободившейся нитью ДНК
жидкой среде обитания. Есть доказательства, что многие бактерии дви-
гаются в сторону тех участков среды, где имеются наиболее благопри-
ятные условия для их существования, и удаляются от участков, в кото-
рых находятся вещества, вредно действующие на них. Подвижные бакте-
рии нуждаются в кислороде , двигаются к поверхности среды - месту
наивысшей концентрации растворимого кислорода. Можно предположить,
что активное движение помогает патогенным бактериям проникать через
вязкие, слизистые секреты, эпителиальные барьеры и распространяться
в жидкостях и тканях организма.
2.2 ї_Размножение бактерий.
Большинство бактерий размножаются путем деления, которому пред-
шествует рост бактерии, то есть увеличение массы ее клетки. Обычно
палочковидные бактерии в длину увеличиваются в двое, и после дости-
жения ими определенного размера посередине клетки возникает попереч-
ная перегородка, состоящая из цитоплазматической мембраны и клеточ-
ной стенки. Такой способ деления называется поперечным. Образовавши-
еся дочерние клетки по своим свойствам полностью подобны материнской
клетке, из которой они возникли.
Для того чтобы бактерии могли расти и размножатся, среда их обита-
ния должна содержать необходимые источники углерода, азота, энергии,
определенной солевой набор, иметь оптимальную температуру. Для боль-
шинства патогенных бактерий она равна 37ї5ої0.
В лабораторных условиях для выращивания бактерий используют ис-
кусственные субстраты, так называемые питательные среды. Скорость
размножения бактерий в этих средах очень велика. Примерно каждые 20
минут бактерия делится, давая две дочерние клетки. Следовательно, из
одной клетки, культивируемой в хорошей питательной среде, через 10
часов образуется 1 млд. потомков. Если бы процесс размножения в пи-
тательной среде не был ограничен, то через 24 часа число потомков
одной бактерии равнялось 10ї521ї0 клеток, а их масса составила бы при-
мерно 4000 тонн. В действительности же в питательной среде высокая
скорость деления клеток наблюдается лишь небольшой период времени с
момента внесения в нее бактерии. Это происходит потому, что очень
быстро истощаются питательные вещества среды и в ней накапливаются
продукты обмена, неблагоприятно действующие на бактерии. Скорость
размножения патогенных бактерий в организме значительно меньше, чем
в искусственной питательной среде.
2.3 ї_Физиология бактерий.
По химическому составу бактерии не отличаются от клеток других ор-
ганизмов. Бактериальная клетка содержит 70-85% воды. Около 90% сухо-
го остатка составляют высокомолекулярные соединения: нуклеиновые
- 10 -
кислоты (10%), белки (40%), полисахариды (15%), пептидогликан (10%)
и липиды (15%); остальные 10% приходятся на
моносахара, аминокисло-
ты, азотистые основания, неорганические соли и другие низкомолеку-
лярные соединения. Во всех процессах жизнедеятельность бактерий, как
и других организмов, участвуют многочисленные ферменты. Одни из них
(эндоферменты) функционируют только внутри клетки, обеспечивая про-
цессы синтеза, дыхания и тому подобное. Другие (экзоферменты) выде-
ляются бактериями в окружающую среду. Необходимые бактериям высоко-
молекулярные соединения синтезируются из небольших молекул, проника-
ющих в клетку через цитоплазматическую. мембрану Белки, полисахари-
ды, липиды могут быть использованы бактерией как источник питания
лишь после их расщепления экзоферментами - до аминокислот, моносаха-
ров и др.
Для нормальной жизнедеятельности бактерия должна быть обеспечена
источниками углерода и азота. Одни виды бактерий (афтотрофы) исполь-
зуют неорганический углерод, другие (гетеротрофы), в число которых
входят и патогенные бактерии, используют органические соединения.
Гетеротрофные бактерии в свою очередь разделяются на сапрофитов, пи-
тающихся органическими соединениями внешней среды, и паразитов, жи-
вущих за счет другого организма.
Фаг Х174 без отростка с выступами
Различные бактерии неодинаково относятся к наличию или отсутствию
свободного кислорода. По этому признаку они делятся на три группы:
аэробы, анаэробы и факультативные анаэробы. Строгие аэробы, например
синегнойная палочка, могут развиваться лишь при наличии свободного
кислорода. Анаэробы, например возбудители газовой гангрены, столбня-
ка, развиваются без доступа свободного кислорода, присутствие кото-
рого угнетает их жизнедеятельность. Наконец, факультативные анаэро-
бы, например возбудители кишечных инфекций, развиваются как в кисло-
родной, так и в бескислородной среде.
Аэробность или анаэробность бактерий обусловливается способом по-
лучения ими энергии, необходимой для обеспечения процессов жизнедея-
тельности. Некоторые бактерии (фотосинтезирующие) способны, подобно
растениям, использовать непосредственно энергию солнечного света.
остальные (хемосинтезирующие) получают энергию в ходе различных хи-
мических реакций. Существуют бактерии (хемоафтотрофы), окисляющие
неорганические вещества (аммиак, соединения серы и железа и др.). Но
для большинства бактерий источником энергии служат превращения орга-
нических соединений: углеводов, белков, жиров и др. Аэробы использу-
ют реакции биологического окисления с участием свободного кислорода
(дыхание), в результате которых органические соединения окисляются
до углекислого газа и воды. Анаэробные получают энергию при расщеп-
лении органических соединений без участия свободного кислорода. Та-
кой процесс называется брожением. При брожении, кроме углекислого
газа, образуются различные соединения, например спирты, ацетон и др.
В процессе жизнедеятельности бактерии образуют биологически актив-
ные вещества - ферменты, антибиотики, пигменты, летучие ароматичес-
кие соединения, токсины и др.
2.4 ї_Антибактериальные химиотерапевтические агенты.
Химические соединения, используемые для дезинфекции, хотя и обла-
дают высокой антибактериальной активностью, не могут из-за их ток-
сичности применяться в лечебных целях. Для этого пригодны антибакте-
Фаг Т2
риальные химиотерапевтические средства. Они способны убивать бакте-
рий или угнетать их жизнедеятельность, не оказывая при определенных
дозах токсического влияния на ткани или организм в целом, то есть
действие их должно быть изобретательным, направленным против бакте-
рии или другого микроорганизма.
Кроме химических соединений, мощными антибактериальными средствами
являютсяї1 антибиотикиї0 - химиотерапевтические препараты естественного
- 11 -
происхождения, синтезируемые микроорганизмами.
Теоретические основы химиотерапии и вопросы ее практического ис-
пользования при лечении инфекционных заболеваний были разработаны в
начале века немецким ученым П. Эрлихом, который открыл органические
соединения мышьяка, активные при лечении сифилиса. Однако долгие го-
ды не удавалось найти химиотерапевтические средства для лечения для
лечения бактериальных инфекций. Дальнейшее развитие химиотерапии
связано с открытием сульфаниламидов. Применение сульфаниламидов не
только обогатило медицину новыми по тому времени химиотерапевтичес-
кими средствами, но и вызвало к жизни новое направление поиска анти-
бактериальных химиотерапевтических средств. Это направление возникло
в результате изучения механизма действия сульфаниламидов на бактери-
альную клетку. Было установлено, что по химической структуре сульфа-
ниламид подобен парааминобензойной кислоте - одному из важных проме-
жуточных продуктов (метаболитов), участвующих в синтезе нуклеиновых
кислот. Из-за химического подобия сульфаниламид действует как анти-
метаболит парааминобензойной кислоты: включаясь вместо нее в биохи-
мические процессы, но не заменяя ее, сульфаниламид нарушает синтез
нуклеиновых кислот в бактериальной клетке. Исходя из этих данных,
было сформулировано положение, что среди антиметаболитов других био-
химических процессов окажутся лечащие антибактериальные средства.
Однако проблема получения новых лекарственных средств против бакте-
риальных инфекций, принцип действия которых основан на конкуренции
метаболита с важным для клетки метаболитом, оказалось значительно
сложней, чем предполагалось. Это связано с тем, что синтезированные
антиметаболиты подавали обмен веществ не только у бактерий, но и в
тканях организма. Таким образом, проблема свелась к поиску реакций
обмена веществ, специфичных для бактерий и отсутствующих в клетках
организма человека или животного.
Биохимические реакции, присущи лишь бактериям, были обнаружены в
процессе синтеза клеточной стенки, в частности при образовании пеп-
тидогликана. Некоторые антибиотики (пенициллин, циклосерин) эффек-
тивные как антибактериальные средства, воздействуют на процесс фор-
мирования клеточной стенки, нарушая синтез пептидогликана, входящего
в его состав, что приводит к лизису бактерий. Другие бактерии - тет-
рациклин, левомицетин, стрептомицин и другие - способны нарушать
синтез белков в бактериальных клетках. Первым препаратом этой груп-
пы, нашедшим применение в клинике, был стрептомицин. Оказалось, что
он способен изобретательно объединяться с рибосомами клеток организ-
ма-хозяина. В результате "точность" рибосом бактерии в процессе син-
теза белка нарушается, что приводит к "порче" синтезируемых белков и
гибели бактерии. Неомицин, канамицин, левомицетин и эритромицин так-
же взаимодействуют с рибосомами бактериальной клетки. Тетрациклин
нарушает присоединение информационной РНК к рибосомам. Лечащее дейс-
твие упомянутых антибиотиков определяется их специфичностью, то есть
относительно низкой способностью влиять на эти же процессы в клетках
высших организмов.
2.5 ї_Устойчивость бактерий к факторам окружающей среды.
На жизнедеятельность бактерий влияют температура, влажность, уль-
трафиолетовое излучение. К низким температурам бактерии устойчивы,
некоторые выживают даже при -190ї5ої0, а споры при -253ї5ої0. К высоким тем-
пературам бактерии высокочувствительные. Не спорообразующие бактерии
погибают при температуре 60-70ї5ої0, спорообразующие - при прогреве выше
100ї5ої0. Разные виды бактерий по-разному переносят высушивание: одни
(например гонококки) очень быстро погибают, другие в этих же услови-
ях выживают. Так, палочка дизентерии при высушивании остается жиз-
неспособной 7 суток, дифтерии - 30 суток, брюшного тифа - 70 суток,
- 12 -
туберкулеза - 90 суток, споры бацилл сибирской язвы - до 10 лет.
Бактерии чувствительны к ультрафиолетовому излучению и прямому сол-
нечному свету.
2.6 ї_Болезнетворность бактерий.
Из огромного количества бактерий, обнаруженных в природе, лишь не-
большое число видов являются патогенными. Болезнетворность бактерий
определяется их способностью преодолевать защитные барьеры организ-
ма, внедрятся в его ткани и выделять токсические вещества.
При ряде заболеваний (дифтерия, столбняк и др.) общее тяжелое по-
ражение организма не сопровождается распространением бактерий-возбу-
дителей из места их первичного внедрения. Например, при дифтерии
возбудитель обнаруживается в носоглотке и трахее, а пораженными ока-
зываются сердечная мышца, нервы, надпочечники. Изучение причины это-
го явления привело к заключению, что токсин, вырабатываемый возбуди-
телем болезни, всасывается в кровь и транспортируется в разные орга-
ны и ткани. В питательной среде или в организме бактерия в период ее
активного роста выделяется в среду обитания токсин - экзотоксин.
Кроме дифтерийной палочки, экзотоксины образуются возбудителями
столбняка, газовой гангрены, одним из возбудителей дизентерии и др.
Экзотоксины представляют собой чувствительные к нагреванию белки с
высоким молекулярным весом. Они очень ядовиты, способны отравить бо-
лее 5 миллионов литров воды.
Действие токсинов как биологически активных веществ подобно дейс-
твию ферментов, и некоторые экзотоксины в самом деле являются бакте-
риальными ферментами, а другие могут взаимодействовать с ферментами
клеток. Нейротоксин, синтезируемый дизентерийный бактерией, первично
поражает мелкие сосуды головного и спинного мозга, что ведет к нару-
шению функций центральной нервной системы. Холерный экзотоксин вызы-
вает повышенную секрецию жидкости в тонкой кишке.
Важное практическое значение имеет установление факта, что под
действием формальдегида, не влияющего на антигенность, экзотоксины
теряют ядовитость. В результате токсин превращается токсоид, который
применяют для иммунизации организма с целью создания в нем невоспри-
имчивости к данному токсину.
Ряд бактерий (кишечные палочки, большинство возбудителей дизенте-
рии, гонококки и др.) не синтезируют экзотоксины, и отравляющее
действие этих бактерий на организм связано с эндотоксинами - сложны-
ми соединениями, в молекулу которых входят фосфолипид, полисахарид и
белок.
Фактором болезнетворности некоторых бактерий (палочек сибирской
язвы, чумы, коклюша и др.) оказалась капсула. Разрушение ее путем
обработками ферментов или другими соединениями, а также в результате
соответствующих мутаций, приводящих к нарушению синтеза капсулы,
резко снижает болезнь. Это выражается в том, что для развития смер-
тельного заболевания у подопытного животного ему необходимо ввести
во много тысяч раз больше бескапсульных бактерий, чем бактерий, име-
ющих капсулу. Капсула защищает бактерию от фагоцитоза, но механизм
ее защитного действия не совсем ясен. Предполагают, что электричес-
кий заряд поверхности капсулы препятствует возникновению физического
контакта фагоцита с бактерией.
Кроме токсинов и капсулы, у некоторых бактерий обнаружены и другие
факторы, определяющие их болезнетворность. К их числу относится фер-
мент гиалуронидаза, продуцируемый гноеродным стрептококком и раство-
ряющий основное вещество соединительной ткани - гиалуроновую кисло-
ту, что облегчает распространения бактерий в тканях. Патогенные ста-
филококки синтезируют другой фермент - коагулазу, который, вероятно,
является одним из факторов болезнетворности этих бактерий. Коагулаза
- 13 -
действует подобно тромбину вызывая образование сетки фибрина вокруг
стафилококка препятствует таким образом фагоцитозу.
3. ї_Проблемы Спида.
Спид - синдром приобретенного иммунодефицита. Существуют несколь-
ко вирусов иммунодефицита человека: ВИЧ-1, обнаруженный у людей в
большинстве стран мира, и ВИЧ-2, обнаруженный в Западной Африке.
Спид вызывает вирус, идентифицированный как ВИЧ - вирус иммунодефи-
цита чело века.
История возникновения Спида говорит о том, что сегодняшняя эпиде-
мия новая. Возможно и раньше встречались отдельные случаи Спида. В
начале 80-х врачи в США, Европе и Африке стали замечать особую ком-
бинацию симптомов и течение болезней, ранее не встречавшихся. Это
Фаг Т3 с коротким отростком
их удивляло, потому что: - серьезные заболевания, от которых люди
умирали, возникали раньше только у тех, у которых была ослаблена
иммунная система, например у больных раком или страдающих хроничес-
ким недоеданием; - симптомы обычно легко протекающих заболеваний,
таких как герпес или обычные стоматиты и молочницы, приобретали
очень серьезный характер, поражали все тело и часто встречались в
необычных комбинациях; - заболевание поражало ранее здоровых, силь-
ных и молодых людей.
Специалисты заметили, что на Западе такие проявления зоболеваний
встречались преимущественно у гомосексуалистов, в Африке - и у муж-
чин и у женщин. Затем болезнь проявлялась у тех, кому делали пере-
ливание крови и внутривенные вливания, а также у младенцев, родив-
шихся у матерей, заболевших Спидом. Это навело на мысль, что забо-
левание вызвано каким-то вирусом, циркулирующим в крови, а также
передающимся половым путем.
Начались поиски этого вируса и был обнаружен ВИЧ. ВИЧ был найден
у зараженных людей в крови, сперме, выделениях из влагалища. Это
белые кровяные тельца - лимфоциты и макрофаги.
Лимфоциты ВИЧ-1 разрушает, а зараженные макрофаги не погибают,
но становятся резервуарами инфекции. Она начинается, кода вирус
прилипает к белку-рецептору, расположенному на поверхности клеток-
мишеней.
Особенности ретровирусов (к этому классу относится ВИЧ) заключа-
ется в том, что их гены закодированы в РНК, а не в ДНК, как обычно.
Вирусная РНК, попадая в клетку-жертву, с помощью особого фермента
трансформируется в ДНК (провирус). Вирусная генетическая информация
в форме двух цепочек ДНК, то есть в той же, в какой хранят клетки-
мишени свои гены, включается в их ДНК. Теперь каждый раз, когда
клетка будет делится, вирусная ДНК будет дублироваться. Так инфек-
ция становится постоянной. Но даже если клетка не производит вирус-
ных частиц, она всегда остается банком "спящих" генов ретровирусов.
Число заболевших Спидом стало увеличиваться с 1980 года каждые 8
месяцев в два раза в тех странах, где был впервые обнаружен этот
вирус. Болезнь распространилась практически во все страны мира.
Ранние исследования говорят о том, что вирус возник в Центральной
Африке, затем перебрался на Гаити, и через гомосексуалистов был
привезен в США. Эта версия была зафиксирована в официальных доку-
ментах, хотя позже было установлено, что это необоснованно. Число
людей, впервые заболевших Спидом в Африке, вначале было преувеличе-
но, так как тесты на наличие вируса часто давали ложные результаты.
Не установлено, откуда пришел ВИЧ. Предполагают, что самый ранний
случай появления ВИЧ был зарегистрирован в 1969 году в США у маль-
чика, умершего от иммунодефицита. Исследования его законсервирован-
ной крови и тканей показало наличие антител к ВИЧ.
- 14 -
3.1 ї_Заражение ВИЧом.
Не так-то просто заразиться ВИЧ. ВИЧ не разносится по воздуху и
не может проникнуть в наш организм капельным путем, как в кровь.
Существует четыре основных пути передачи ВИЧ:
- при половом акте с человеком, зараженным ВИЧ;
- при переливании крови, зараженной ВИЧ;
- внутриутробно от зараженной матери к ребенку;
- при наличии зараженной крови на медицинских инструментах, в шпри-
цах и т.д.
Наибольшее количество ВИЧ находится в крови, сперме и влагалищном
секрете. От зараженного человека ВИЧ проникает в лейкоциты пока еще
здорового человека. Человек может заразится ВИЧ только в том слу-
чае, если инфицированная кровь, сперма и влагалищный секрет попада-
ют непосредственно в кровь или на слизистые оболочки здорового че-
ловека. Причем заражение вирусом, попавшем на кожу и слизистые,
произойдет только в том случае, если на них есть повреждения (цара-
пины, порезы, потертости).
3.2 ї_їІКлинические симї0пїІтомы Спида.
Заражение здорового человека ВИЧ не всегда проявляется клиничес-
кими симптомами и, как правило, человек долго чувствует себя прак-
тически здоровым, оставаясь вирусоносителем.
Примерно через три месяца у людей, зараженных ВИЧ, уже можно ла-
бораторно определить антитела к вирусу.
Клинические проявления Спида появляются после заражения через 6
месяцев или даже несколько лет. Однако эти симптомы характерны не
только для Спида, а присущи многим заболеваниям: рак, пневмония,
диарея и т.д.
После исключения этих заболеваний врач может поставить диагноз
Спида, если у пациента проявляется два и более основных симптомов и
как минимум один второстепенный.
ї2Основные клинические симптомы Спида:
- потеря веса более, чем на 10% от прежнего веса;
лихорадка, длящаяся более месяца;
- понос, длящийся более месяца (с перерывами или постоянно);
- сильная утомляемость и слабость.
ї2Второстепенные клинические симптомы:
- кашель, продолжающийся более одного месяца;
- стоматит;
- язвенные поражения кожи;
- опоясывающий лишай;
- увеличение лимфоузлов одной или нескольких групп (исключая пахо-
вые) в течение трех месяцев.
В конечной стадии болезни иммунная система человека окончательно
разрушается. Организм становится восприимчивым к различным заболе-
ваниям, которые, как правило, имеют летальный исход.К ним относятся
следующие заболевания:
- легочные заболевания;
- инфекционные заболевания головного мозга, сопровождающиеся нару-
шениями интеллекта и сильными головными болями;
- кишечные инфекции, которые сопровождаются длительной диареей;
- рак, особенно рак кожи, который называется саркомой Капоши.
Около половины людей, у которых диагностирован Спид, умирает че-
рез два года после постановки клинического диагноза. По данным США,
15% больных прожили только до 5 лет.
Через какое время человек, зараженный ВИЧ, может заболеть Спидом?
Некоторые люди, зараженные ВИЧ, могут вообще никогда не заболеть
Спидом. С 1980 года, когда был обнаружен Спид, еще не установлен
- 15 -
процент людей, у которых развилась болезнь за 10 или 20 лет. Можно
отметить, что каждый год у 12% людей, зараженных ВИЧ, проявляются
лишь симптомы заражения, а у 2-9% развивается Спид. Люди, заражен-
ные ВИЧ, заболевают Спидом в среднем через 8 лет.
3.3 ї_їІПрепараты для борьбы против Спида.
Американские исследователи обнаружили, что ВИЧ-1 может активизи-
роваться, если повреждается его ДНК, включенная в геноме клеткими-
шени. Повреждающими агентами были ультрафиолет, некоторые препараты
- то есть они могут разбудить дремлющую в организме инфекцию.
По мнению ученых, именно способность генома ВИЧ проникать в хро-
мосомы клетки-хозяина делает невозможным создание вакцины с исполь-
зованием полного вируса. Скорее всего в такой вакцине должны быть
части вируса в определенной комбинации, но опыта создания подобных
препаратов в мире практически нет.
Несмотря на регулярно появляющиеся сообщения, что лекарство от
Спида найдено, они, как правило, оказываются мыльными пузырями.
Единственное действующее средство, позволяющее поддерживать боль-
ных, продлевать им жизнь, это АЗТ (азидотимидин, препарат, создан-
ный как антираковый). Потом японские ученые обнаружили, что в соче-
тании с декстран-сульфатом действие АЗТ усиливается.
Новые препараты для борьбы против Спида разработала южнокорейская
компания "Сонген индастриз".
На создание препаратов - химических компонентов, получивших кодо-
вые наименования Эс-Кей-Ай 1694, 1695, 1703, 1723, ушло около 1,3
млн долларов и два года исследований фармацевтической группы во
главе с доктором Ким Дэ Ги. Лабораторные испытания показали способ-
ность препаратов замедлять развитие не излечимого пока заболевания
в организме человека в большей степени, чем при применении азидоти-
мидина - наиболее широко используемого средства против Спида. "Сон-
ген индастриз" уже запатентовала полученные ею химикаты, которые
могут быть использованы в производстве лекарств в 20 странах мира,
включая США и Японию, надеясь выбросить их на международный рынок к
1998 году. По словам представителей компании, до того, как будет
налажен массовый выпуск медикаментов, на их испытаниях на инфициро-
ванных пациентах уйдет три года.
В Южной Корее это уже не первая попытка найти панацею от "чумы XX
века". В прошлом году здешние специалисты предложили использовать
для лечения больных Спидом порошок из красного женьшеня - разновид-
ности "корня жизни", произрастающего в диком виде в Центральных ра-
йонах Корейского полуострова. Ученые Государственного института
здравоохранения Республики Корея установили возможность замедления
развития синдрома иммунодефицита с помощью комбинированного исполь-
зования этого средства с азидотимидином
Статистика:
По данным ВОЗ на конец 1994 года в мире зарегистрировано 17 миллионов ВИЧ-инфицированных. Причем 66% из них находится в Африке на территориях южнее Сахары (11.2 миллиона человек). В Южной и Юго-Восточной Азии насчитывается около 3 миллионов носителей вируса СПИД. Во всей Австралазии зарегистрировано только около 12.000 зараженных. В 15 странах (все они расположены на территориях южнее Сахары) количество ВИЧ-инфицированных составляет в районе 500 человек на 10.000 населения. В 50 странах этот показатель колеблется в районе 5 человек на 10.000 населения. В остальных странах он ниже. Таким образом, наблюдается очень неравномерное распространение вируса СПИД, но все же заболевание имеет масштабы пандемии.
Различается и частота выявления вируса среди разных слоев населения. Среди мужчин-гомосексуалистов она составляет 60-90%, а среди наркоманов, употребляющих наркотики внутривенно - 13-20%. Хотя в последнее время начинает наблюдаться обратная картина. Первая волна эпидемии распространялась среди мужчин-гомосексуалистов, а нынешняя - среди наркоманов, применяющих внутривенные инъекции, что позволит эпидемии в большей мере захватить и гетеросексуальную часть населения. Переход эпидемии на гетеросексуальную часть населения будет происходить благодаря бисексуальным мужчинам, наркоманам и проституткам. Сегодня процент женщин среди заболевших СПИДом составляет около 5-10%, среди которых 50% заболевших - инъекционные наркоманы, 29% заразились при гетеросексуальных половых контактах. Правда, изучение гетеросексуального пути распространения выявило различия в эффективности передачи вируса - она максимальна среди женщин, партнеры которых больны СПИДом, а для передачи от больной женщины к ее партнерам составляет 65%.
Накоплены также убедительные данные о том, что в Африке ВИЧ распространяется в основном благодаря гетеросексуальным половым контактам, причем соотношение между числом заболевших мужчин и женщин составляет примерно 1:1. Помимо половых контактов важную роль играют переливания зараженной крови, и, возможно, иглы для лечебных манипуляций, а также вертикальный путь передачи. Сейчас установлено, что первые случаи СПИДа имели место в Африке еще в конце 70-х годов. Эпидемиологические данные для ряда африканских стран показали, что в определенных группах процент зараженных очень высок: 80-90% проституток, 30% их клиентов, 30% больных посещающих венерологические отделения, 10% доноров крови, 10% женщин, посещавших клиники пренатального профиля. И хотя высокий уровень инфицированности был вначале характерен только для районов Центральной Африки, вирус и вызываемая им болезнь распространились оттуда почти по всему континенту.
Далее приводятся некоторые конкретные цифры и показатели по распространенности ВИЧ/СПИД на нашей планете.
Число зарегистрированных ВОЗ случаев СПИДа на разных континентах
Основано на сообщении от 15 декабря 1995 года.
НОВЫЕ СЛУЧАИ СПИДа
ГОД Африка Америка Азия Европа Океания ВСЕГО
1979 0 2 0 0 0 2
1980 0 185 1 17 0 203
1981 0 322 1 20 0 343
1982 2 1156 1 80 91 1330
1983 17 3352 8 295 6 3678
1984 187 6680 8 570 76 7521
1985 521 12682 27 1475 142 14847
1986 5438 21322 86 2395 252 29493
1987 16854 34562 150 9640 324 61530
1988 28212 47697 176 10811 598 87494
1989 41295 56202 288 14355 699 112839
1990 54528 65041 478 17311 770 138128
1991 72756 78579 838 18937 897 172007
1992 73631 99881 2039 20697 866 197114
1993 67124 100731 7368 22053 879 198155
1994 65684 83475 11707 23541 906 185313
1995 16486 47793 5454 11906 174 81813
________________________________________________________
ВСЕГО 442735 659662 28630 154103 6680 1291810
ВСЕГО СЛУЧАЕВ СПИДа
ГОД Африка Америка Азия Европа Океания ВСЕГО
1979 0 2 0 0 0 2
1980 0 187 1 17 0 205
1981 0 509 2 37 0 548
1982 2 1665 3 117 91 1878
1983 19 5017 11 412 97 5556
1984 206 11697 19 982 173 13077
1985 727 24379 46 2457 315 27924
1986 6165 45701 132 4852 567 57417
1987 23019 80263 282 14492 891 118947
1988 51231 127960 458 25303 1489 206441
1989 92526 184162 746 39658 2188 319280
1990 147054 249203 1224 56969 2958 457408
1991 219810 327782 2062 75906 3855 629415
1992 293441 427663 4101 96603 4721 826529
1993 360565 528394 11469 118656 5600 1024684
1994 426249 611869 23176 142197 6506 1209997
1995 442735 659662 28630 154103 6680 1291810
______________________________________________________
ВСЕГО 442735 659662 28630 154103 6680 1291810
Данные отностительно конкретных стран можно найти в приложении.
Но, к сожалению, точные цифры числа заболевших и инфицированных в мире неизвестны. Это обусловлено несколькими причинами. Во-первых, сама статистика несовершенна - ВОЗ регистрирует только больных с выраженной картиной заболевания и не учитывает лиц с пре-СПИДом и вирусоносителей. Во-вторых, некоторые страны дают неполные данные потому, что у них тестированию на ВИЧ подвергается незначительная часть людей, относящихся к категории высокого риска. Это в основном страны Африки и Азии, где отсутствие средств для постановки соответствующих исследований препятствует полноценному выявлению инфицированных, прежде всего доноров крови. Третья причина состоит в том, что правительства ряда стран опасаются публикации этих сведений, чтобы они не навредили иностранному туризму, который является там одним из главных источников национального дохода.
На данный момент эти числа увеличились, как минимум, в 10 раз