Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.nature.web.ru/db/msg.html?mid=1157624&uri=1.html
Дата изменения: Unknown
Дата индексирования: Mon Apr 11 03:56:41 2016
Кодировка: Windows-1251

Поисковые слова: п п п п п п п
Научная Сеть >> В.<b style="color:black;background-color:#66ff66">П</b>. Скулачев. Кислород в живой клетке : добро и зло.
Rambler's Top100 Service
Поиск   
 
Обратите внимание!   BOAI: наука должна быть открытой Обратите внимание!
 
  Наука >> Биология >> Биохимия | Обзорные статьи
 Написать комментарий  Добавить новое сообщение
 См. также

Обзорные статьиВ.П. Скулачев. Законы биоэнергетики

Обзорные статьиВ.П. Скулачев. Альтернативные функции клеточного дыхания

Обзорные статьиВ.П. Скулачев. Законы биоэнергетики: (1)

Обзорные статьиА.Б. Рубин. Биофизические методы в экологическом мониторинге

Обзорные статьиВ.П. Скулачев. Альтернативные функции клеточного дыхания: (1)

В начало...

Кислород в живой клетке : добро и зло. В. П. СКУЛАЧЕВ. Продолжение.

"НЕОМИЧЕСКАЯ" УТЕЧКА ПРОТОНОВ
Как показали Боверис и Чанс, образование Н2O2 митохондриями клеток животных в условиях in vitro, вполне заметное при дефиците АДФ, становится практически неизмеримым при добавлении АДФ. Поскольку сравнительно небольшое снижение , вызываемое аденозиндифосфатом, оказывается достаточным, чтобы прекратилось накопление Н2О2 , можно принять, что такой эффект будет достигаться при сравнительно небольшом увеличении утечки ионов Н +, не сопряженной с синтезом АТФ.
Заманчиво предположить, что митохондрии располагают специальным механизмом увеличения утечки в состоянии покоя. Этот механизм мог бы предотвратить полное торможение дыхания, сильное восстановление дыхательных ферментов и коферментов и накопление Co. Он должен включаться, когда АДФ исчерпывается, и выключаться, когда АДФ появляется вновь. В отличие от сужения капилляров, механизм утечки должен действовать на внутриклеточном, а не надклеточном уровне. Механизм такого рода может иметь отношение к явлению "неомичности" сопротивления митохондриальной мембраны. Суть его состоит в том, что при высоких сопротивление резко снижается, перестав подчиняться закону Ома. Это происходит за счет роста протонной проводимости мембраны. Пороговое значение , выше которого включается "неомичность", лежит над тем уровнем , который поддерживается в условиях синтеза АТФ. Есть данные, что "неомичность" стимулируется тиреоидными гормонами и подавляется мужскими половыми гормонами и прогестероном. "Неомичность" мембраны позволяет поддерживать низкую концентрацию О2 независимо от доступности АДФ и без торможения синтеза АТФ. И, что, вероятно, еще важнее, она предотвращает накопление Co, образуемого дыхательными ферментами, которые, во-первых, ответственны за генерацию большей части в клетке и, во-вторых, локализованы во внутренней мембране митохондрий, то есть вблизи митохондриальной ДНК, находящейся в митохондриальном матриксе (рис. 3).
По-видимому, именно митохондриальная ДНК служит наиболее уязвимой мишенью для активных производных кислорода. Существует множество свидетельств, что окислительное повреждение митохондриальной ДНК играет ключевую роль в целом ряде "митохондриальных болезней", а также в процессах старения. Что касается ядерной ДНК, она находится слишком далеко от мест образования активных производных кислорода, которые, вероятно, успевают инактивироваться еще на пути к ядру.
Эффекты такого рода могли бы объяснить недавнее наблюдение на мутанте дрожжей, дефицитном по супероксиддисмутазе. Рост этого мутанта резко тормозился при повышении концентрации кислорода. Неблагоприятный эффект О2 удалось снять путем введения еще одной мутации (Rho0), приводящей к отсутствию ферментов дыхания. Описаны благоприятные эффекты увеличения супероксиддисмутазы при нормальном уровне О2 . Например, одновременная повышенная экспрессия супероксиддисмутазы и каталазы увеличивает продолжительность жизни дрозофил.

Рис. 3. Схема окислительного повреждения митохондриальной ДНК радикалом ОН, образуемым в цепи реакций одноэлектронного восстановления кислорода дыхательными ферментами и коферментами.


ПОРЫ В МЕМБРАНЕ МИТОХОНДРИЙ
Утечка ионов Н + служит, по-видимому, первым и наиболее деликатным механизмом поддержания низких уровней О2 и Co. Если эта система оказывается недостаточной, включается более радикальный путь, ведущий к той же цели. Подобную роль, по нашему мнению, могли бы играть поры во внутренней митохондриальной мембране. Поры, о которых идет речь, проницаемы для веществ массой не более 1,5 кДа (килодальтон). Они образуются во внутренней мембране при определенных, весьма специфических условиях. Из-за большого диаметра пор их открытие приводит к немедленному выравниванию всех градиентов низкомолекулярных веществ, включая ионы Н + и субстраты дыхания. В результате полностью рассеивается, а дыхание достигает максимальных скоростей, будучи ограниченным только активностью дыхательных ферментов, но не и не скоростями трансмембранных потоков субстратов через их переносчики. Фактически поры превращают митохондрию из "электростанции клетки" в "топку", сжигающую субстраты кислородом без всякого накопления энергии. В данном контексте наиболее интересной чертой, присущей порам, является их способность открываться в ответ на накопление продуктов одноэлектронного восстановления О2 .
Складывается впечатление, что накопление , Н2О2 или OH служит сигналом для открывания пор. Это приводит к гораздо более сильной, чем "неомическая" утечка, стимуляции дыхания и, стало быть, к более быстрой уборке О2 . Когда концентрация О2 падает, уменьшается скорость одноэлектронного восстановления кислорода и поры закрываются. Интересно, что открытие пор требует некоторого снижения . Поэтому можно предполагать, что "неомическая " утечка предшествует открытию пор.

АПОПТОЗ, ЗАВИСЯЩИЙ ОТ O2-
Вероятно, при некоторых неблагоприятных условиях оказывается неэффективным также и второй эшелон защиты от кислородной опасности, каким являются поры. Это может иметь место, например, при дефектах системы дыхательных ферментов. В таких случаях резко возрастает риск повреждения митохондриальной (а, может быть, также и ядерной) ДНК активными кислородными интермедиатами. Сосуществование клеток, страдающих подобными дефектами, с нормальными клетками в одной и той же ткани представляется опасным прежде всего в силу высокой вероятности злокачественного перерождения. Чтобы избежать такой ситуации, клетки, не способные предотвратить накопление активных продуктов кислорода, уничтожаются апоптозом - особым механизмом самоубийства клетки, при котором в клетке активируются ферменты эндонуклеазы, расщепляющие клеточную ДНК на фрагменты. Известно, что один из типов апоптоза запускается в условиях аккумуляции и последующих интермедиатов. Есть указания, что открытие митохондриальных пор необходимо для -зависимого апоптоза, так же как "неомическая" утечка Н + нужна для открытия пор. Таким образом, можно представить себе следующую цепь событий, обеспечивающих антикислородную защиту:
"Неомическая" утечка Н +
(5) открытие митохондриальных пор
O2- зависимый апоптоз.

ПРОБЛЕМА КИСЛОРОДНОЙ ОПАСНОСТИ У РАСТЕНИЙ
Выше речь шла преимущественно о животных клетках. Однако проблема кислородной опасности стоит еще более остро у зеленых растений, клетки которых не только поглощают, но и образуют O2 . Быть может, именно защитой от кислорода объясняются многочисленные случаи так называемого несопряженного дыхания в растительных клетках.
Среди таких дыхательных систем, не способных к образованию и, следовательно, к синтезу АТФ, наиболее изучена цианидрезистентная CoQH2-оксидаза. Фермент локализован во внутренней мембране митохондрий. Он катализирует четырехэлектронное восстановление О2 посредством CoQH2 . Интересно, что несопряженная CoQH2-оксидаза включается при гораздо больших отношениях CoQH2 / Co, чем сопряженная оксидаза, имеющаяся в тех же митохондриях. Напомним, что это отношение растет при переходе митохондрий в состояние покоя, когда возрастает риск "паразитных" реакций одноэлектронного восстановления О2 .

"ДЫХАТЕЛЬНОЕ ПРЕДОХРАНЕНИЕ" У БАКТЕРИЙ-АЗОТФИКСАТОРОВ
Мысль о том, что дыхательная система может быть специализирована на снижении внутриклеточной [О2 ], первоначально обсуждалась применительно к двум проблемам, а именно биологической эволюции и фиксации азота. В первом случае предполагалось, что первичные дыхательные ферменты, возникшие в ответ на повышение количества О2 в атмосфере, имели своей функцией уборку О2 , продуцируемого фотосинтезом.
В клетках функция снижения уровня О2 , несомненно, присуща одной из дыхательных систем N2-восстанавливающих бактерий. Этот феномен был назван "дыхательным предохранением". Показано, что у таких бактерий поглощение О2 в процессе дыхания поддерживает концентрацию О2 на достаточно низком уровне, безопасном для нитрогеназы - фермента, восстанавливающего N2 и чувствительного к кислороду. Интересны результаты опытов на бактерии Azotobacter vinelandii. Эта бактерия характеризуется необычно высокой скоростью потребления кислорода. Дыхание сопровождается рассеянием столь больших порций энергии, что происходит быстрый разогрев ростовой среды. A. vinelandii обладает двумя конечными оксидазами типов o и d. Делеция в гене оксидазы o не влияет на аэробную фиксацию N2 , в то время как делеция в гене оксидазы d делает фиксацию N2 невозможной, если не понизить количество О2 до 1,5 объемных процентов. На основе этих фактов было сделано заключение, что оксидаза типа d ответственна за дыхательное предохранение у A. vinelandii при нормальном парциальном давлении кислорода.
Сосуществование нескольких конечных оксидаз в одной и той же клетке типично для многих видов бактерий. По-видимому, часть из них используется в качестве протонных насосов, часть - натриевых насосов, в то время как остальные катализируют несопряженное дыхание. Среди последних некоторые могут быть специализированы на "дыхательном предохранении", имеющем, вероятно, гораздо более общее значение, чем предохранение нитрогеназного механизма.

ЗАКЛЮЧЕНИЕ
Итак, кислород полезен для живой клетки как окислитель питательных веществ, но вреден как окислитель ДНК и других жизненно важных компонентов. Клетка располагает глубоко эшелонированной системой защиты от повреждающего действия кислорода. Эта система состоит из механизмов: (1) предотвращающих "паразитные" химические реакции одноэлектронного восстановления кислорода и (2) убирающих продукты такого восстановления.
Среди способов, предотвращающих зло, - уменьшение концентрации кислорода и его одноэлектронных восстановителей. Это может достигаться поглощением О2 , не сопряженным с синтезом АТФ вследствие (а) появления "неомической" протонной утечки в мембране митохондрий при повышении над неким критическим уровнем; (б) образования пор в митохондриальной мембране; (в) активации особых дыхательных механизмов, не образующих .
В борьбе с уже возникшими продуктами "паразитных" реакций кислорода участвуют: (1) супероксиддисмутаза, которая образует из не проникающего через мембрану проникающую Н2О2 ; (2) каталаза, разрушающая Н2О2 до О2 и Н2О; (3) пероксидаза, использующая Н2О2 для окисления определенных субстратов, (4) антиоксиданты типа витаминов Е, А и С, прерывающие цепные реакции, инициируемые продуктами "паразитных" реакций (рис. 4).

Рис. 4. Соотношение полезных и повреждающих эффектов кислорода и способов защиты от кислородной опасности. Синие стрелки - основной (полезный) путь утилизации кислорода, приводящий к запасанию энергии в форме сначала , а затем АТФ. Красные стрелки - "паразитный" путь одноэлектронного неферментативного восстановления кислорода посредством Co и некоторых других дыхательных коферментов и ферментов, приводящий в конечном итоге к повреждению ДНК и других жизненно важных молекул. Зеленым цветом показаны три основных механизма борьбы с кислородной опасностью: 1) рассеяние в виде тепла за счет "неомической" утечки протонов или образования митохондриальных пор, 2) разрушение Н2О2 каталазой и 3) прерывание антиоксидантами цепных реакций, инициируемых посредством , Н2О2 и ОН. Для упрощения схемы не указаны: специальные дыхательные системы, окисляющие питательные вещества кислородом без образования с целью снижения концентрации О2 ; пероксидазы, использующие Н2О2 для окисления своих субстратов.


Клетки, не справившиеся с задачей защиты от кислородной опасности и тем самым поставившие под удар свой генетический аппарат, кончают самоубийством, включая апоптоз, зависящий от O2-.

ЛИТЕРАТУРА
1. Уайт А., Хендлер Ф., Смит Э., Хилл Р., Леман И. Основы биохимии. М.: Мир, 1981.
2. Скулачев В.П. Мембранные преобразователи энергии. М.: Высшая школа, 1989.
3. Скулачев В.П. Энергетика биологических мембран. М.: Наука, 1989.
4. Скулачев В.П. // Биохимия. 1994. Т. 59. С. 1910.
5. Скулачев В.П. // Мол. биология. 1995. Т. 29. С. 709.
* * *
Владимир Петрович Скулачев, действительный член Российской Академии наук, президент Российского Биохимического общества, директор Института физико-химической биологии им. А.Н. Белозерского МГУ. В.П. Скулачев - автор фунда-ментальных работ по энергетике клетки, 300 статей в российских и международных журналах, шести монографий и одного учебника. Лауреат Государственной премии СССР, премии им. А.Н. Баха Президиума АН СССР. Основатель отечественной школы энергетики биологических мембран. В течение многих лет читает курс биоэнергетики для студентов биологического факультета МГУ.


Написать комментарий
 Copyright © 2000-2015, РОО "Мир Науки и Культуры". ISSN 1684-9876 Rambler's Top100 Яндекс цитирования