Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.naic.edu/~astro/School/Talks/large_pdf/hagen_rx_2.pdf
Дата изменения: Tue Jul 12 04:31:57 2005
Дата индексирования: Sun Dec 23 03:45:55 2007
Кодировка:

Поисковые слова: m 17
MICROWAVE RECEIVER SYSTEMS
Jon Hagen, Sr. Staff Engineer

1. SINGLE/DUAL POLARIZATION 2. SUPERHETERODYNE PRINICPLE 3. RECEIVER NOISE

SIGNAL IN RABBIT EAR ANTENNA POWER IN

SIGNAL OUT

CRT

120 VAC LOOP ANTENNA SIGNAL IN POWER IN SIGNAL OUT SPEAKER

120 VAC

BROADCAST RECEIVERS

1


FRONT END
SIGNAL IN

IF/LO
DETECTOR

BACK-END
COMPUTER DIGITIZER

FRONT END
SIGNAL IN

IF/LO

(TOTAL POWER) BACK-END
DETECTOR DIGITIZER COMPUTER

DETECTOR DIGITIZER SIGNAL IN

DUAL POLARIZATION

2


CSIRO

POCSIARIZATION SEPARATORS L RO

COAXIAL LINE: ONLY ONE MODE

COAXIAL LINE: ONLY ONE MODE

SQUARE WAVEGUIDE: TWO MODES

PRINTED CIRCUIT T RA CE : ONLY ONE MODE

RECTANGULAR WAVEGUIDE: ONLY ONE MODE CIRCULAR WAVEGUIDE: TWO MODES

SINGLE AND DUAL-MODE TRANSMISSION LINES

3


FRONT-END PHOTOS

SIG. FROM ANTENNA

AMPLIFIER
B A ND PASS FILTER B A ND PASS FILTER

AMPLIFIER
B A ND PASS FILTER

AMPLIFIER

TO BACK END

PRE-SUPERHETERODYNE RECEIVER BLOCK DIAGRAM
SIGNAL FREQUENCY MAY BE TOO HIGH FOR PRACTICAL NARROW BAND FILTERS DIFFICULT TO CHANGE THE CENTER FREQUENCY TOO MUCH GAIN - MUST BE WELL SHIELDED OR WILL OSCILLATE BACK END MUST BE NEARBY TO AVOID TRANSMISSION LOSS SIGNAL FREQUENCY MAY BE TOO HIGH FOR AMPLIFIER TECHNOLOGY

4


SUPERHETERODYNE
Philco Model 39- 70 http://www. grandcanyont uberadio.com/philco/philco10.ht ml

PRE- SUPERHETERODYNE

Atwate r K e nt Mode l 4560 We ste rn H istoric Radio Muse um Virginia City, Ne vada

SINGLE-KNOB TUNNG

ARMSTRONG & THE SUPERHETERODYNE

http://www.geocities.com/neve ya akov/ele ctro_science/armstrong.html

5


RF AMPLIFIER SIG. FROM ANTENNA
BAND PASS FILTER BAND PASS FILTER

FRONT END

FREQUENCY CONVERTER A . K . A . " M I X E R"
BAND PASS FILTER

I.F. AMPLIFIER
BAND PASS FILTER

I.F. AMPLIFIER TO BACK END

LOCAL OSC. VOLTAGE (SINE WAVE)

IF/LO

SUPERHETERODYNE RECEIVER BLOCK DIAGRAM

cos( Lt) cos( R t) =

cos( R - L) t cos( L + R) t + 2 2

cos( L t)


R

AR cos ( R t) =


R

AR cos ( L - R) t + 2


R

AR cos ( L + R) t 2

6


SUPERHETERODYNE SYSTEM 1917, E.H. ARMSTRONG Vmult = Vsig x Vosc Vsig
MULTIPLIER
BAND PASS FILTER

1

Vout

cos ( 0.2t)

0

1

0

20 t

40

Vosc

Vout

1

1

1

cos ( t)

0

cos ( 0.8t)

0

cos ( t) cos ( .8 t)

0

1

0

20 t

40

1

0

20 t

40

1

0

20 t

40

Vsig

Vosc

Vmult

DOW NST A IRS IF- L O SYST EM FUNC T IONA L BL OC K DIA GRA M

11

PA GE 1 OF 3: POL. A SIGN A L PA TH S FIB ER & H ELIA X IN PU TS, POW ER METER 1 , A LFA MON ITOR
f ile : if d w n 1 .e c w las t r e v. A PR. 7, 2005
A LF A F I B E R R E C E I V E R (S P E CT RO M E T E R RO O M ) A LF A 0A ( T O S W . 2, P O L A ) A LF A 1A A LF A 2A A LF A 3A A LF A 4A A LF A 5A A LF A 6A PW R S P LI T T E R A LF A " 7A " A LF A M O N I T O R

N OTES
1 2 3 4 5 6 7 8 9 1 . . . . . . . . . 0 "FP " = FR ON T P A N E L "R P " = R E A R P A N E L IF A MP IS C A S C A D E OF 1 , 2 , OR 3 1 0 d B A MP S 1 0 .5 d B A MP S : C OU GA R A C 2 5 4 6 C , 1 6 d B b OU T @ 1 d B C OMP . 1 1 d B A MP S : C OU GA R A C 5 5 9 C , 2 0 d B m OU T @ 1 d B C OMP . 1 8 d B A MP S : C OU B A R A C 2 5 6 4 C , 1 5 .5 d B m OU T @ 1 d B C OMP . 2 3 d B A MP S : MC L ZX 6 0 -2 5 2 2 M, 1 8 d B m OU T @ 1 d B C OMP . 1 6 d B A MP S : MC L ZX 6 0 -2 5 1 4 M, 1 6 .5 d B m OU T @ 1 d B C OMP . 1 3 d B A MP S : MC L ZX 6 0 -2 5 1 0 M, 1 5 .5 d B m OU T @ 1 d B C OMP . . 2 1 d B A MP S : MC L ZFL -5 0 0 H L N , 1 7 d B m OU T @ 1 d B C OMP .
-6 -6

S W I T C H 1 P O L A C H 5- 8 RA CK 4 ( S E E S C H E M . S H E E T 5)

S W I T C H 1. 5 P O L A C H 5- 8 RA CK 4 ( S E E S C H E M . S H E E T 6) - 10 18

-10

-6 1 NC 2 NC 3 W A P P 1 B O A R D 2A 4 8: 1 S W T C H ( F O R P W R M E T E R 2) -6 5 G A LF A 6 NC 7 NC FP FP

M I X E R S P O L A C H 5- 8 RA CK 4 ( S E E S C H E M . S H E E T 8)

17 17 17 17

S W I T C H 2 P O L A C H 5- 8 RA CK 4 ( S E E S C H E M . S H E E T 10) 11 -6 11 A LF A 1A " A LF A 1"
11

-6
11

-10

-6

-7

-3
500 M H Z LO W - P A S S

-3
11

11
-10
17 17 17 17

2G H Z LO W PASS

-6
-10

LO 5A

A MP S 5 & 6 P OL A RA CK 4
- 10 18 -7

11
-10
17 17 17 17

-6 1 NC 2 NC 3 W A P P 2 B O A R D 2A 4 8: 1 S W T C H ( F O R P W R M E T E R 2) -6 5 G A LF A 6 NC 7 NC FP FP

C I R C LE S R E S P R E S E N T P W R S P LI T T E R S : E X A M P LE

-6

=

4-W A Y PWR D IV ' D R

-6

-3
500 M H Z LO W - P A S S

11 " A LF A 2"

11 -6 A LF A 3A
11

11

-6
-10

7
A LF A F I B E RS PO L A DA T A S E LE C T O R ( 1 O F 14) A LF A F I B E RS PO L B

2G H Z LO W PASS

-3
11

11
-10
17 17 17 17

LO 6A

-6
-10

F RO M A LF A F RO NT E ND

- 10 18 -6

-6

-7

-3
500 M H Z LO W - P A S S

11 A LF A 5A " A LF A 3"

11 11
-10
17 17 17 17 11

-6 1 NC 2 NC 3 W A P P 3 B O A R D 2A 4 NC -6 5 6 7 FP FP G A LF A 8: 1 S W T C H ( F O R P W R M E T E R 2) NC

A LF A 0B ( T O S W . 2, P O L B ) A LF A 1B E T C.

2
T RA NS F E R S W I T CH RA CK 5 ( S E E S C H E M , S H E E T 0) 1 2 3 4 RHC A UX O UT

T R A N S F E R (R E V E R S I N G ) S W I T C H : E X A M P L E : i f 2 " i f 2 _ x f n o rm a l T " (U S E F F O R R E V E R S E D )

-6
11

2G H Z LO W PASS 2G H Z LO W PASS - 10 18

-10

LO 7B -7

-6 -3
11

11
-10
17 17 17 17

7

-6

-3
500 M H Z LO W - P A S S

11 A LF A " 7A " " A LF A 4"

11 -6
-10

F I B E R RE CE I V E R RA CK 5 LH C F I B E R F RO M DO M E

-6 LO 8A RA CK 5 LE F T H A N D P W R M E T E R DUA L CHA NNE L PO W ER M E T E R #1 H P E 4419A

-9 - 10

A MP S 7 & 8 P OL A RA CK 4
-10
11

11
17 17 17 17

-6 1 NC 2 NC 3 W A P P 4 B O A R D 2A 4 NC -6 5 6 7 FP NC 8: 1 S W T C H ( F O R P W R M E T E R 2) NC

5
G PIB RE A DO UT

-6
-10

F RO M UP S T A I RS I F / LO SYST EM

LH C C A R R I A G E H O U S E S I G N A L ( C O N V E R T E D T O 260 M H Z ) F R O M p. 3

H P 4412 P W R HE A D P O L. B ( T O P A G E 2) EXT . C A B LE F RO M PO L B IF AMP ( R A C K 6) H P 4412 P W R HE A D - 10

10dB
RP T EST P O RT -6 NO I S E S O URCE 35 dB E N R RE V E RS I NG R E LA Y RP

M IX E R S O URCE 8 INDE P E NDE NT S WIT CHE S i f2 " i f2 _ m i xe r m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 " w h e re m 1 -m 8 a re a l l 7 5 0 o r a n y m i x t u re of 1750, 1500, and 1250
S W I T C H 1 P O L A C H . 1- 4 RA CK 4 ( S E E S C H E M . S H E E T 4) - 10 - 10 - 10 3 2G H Z LO W PASS 19 M I X E R S P O L A C H 1- 4 RA CK 4 ( S E E S C H E M . S H E E T 7) LO 1 C H B

-6
11

-3
11

11
-10
17 17 17 17

-6
-10

RHC CA RRI A G E HO US E S I G NA L ( C O N V E R T E D T O 260 M H Z ) F R O M p. 3

10dB

11
-10
17 17 17 17 11

-6 1 2 8: 1 S W T C H ( F O R P W R M E T E R 2) P LA N E T A R Y D E C O D E R

4 3 RHC F I B E R F RO M DO M E 2 1 O r t el 10450 . 01- 6 G H z F I B E R RE CE I V E R RA CK 5 P O L A F I LT E R S RA CK 4 ( S E E S C H E M , S H E E T 3) LH C A UX O UT

-6

-7

-3
500 M H Z LO W - P A S S

-6 11 A LF A " A LF A 1" 0A 11 -6 -3
11 11

-10

3 W A P P 1 B O A R D 1A 4 C O R R E LA T O R -6 5 6 7 FP G A LF A NC NC

- 10 LO 1A

11
-10
17 17 17 17

- 10 - 10 2G H Z LO W PASS

3

19

-6

-7

-3
500 M H Z LO W - P A S S 11 A LF A " A LF A 2" 2A

S W IT C H 2 P OL A C H 1 -4 RA CK 4 (S E E S C H E M. S H E E T 9 )
11

-6
-10

A MP S 1 & 2 P OL A RA CK 4
-10
11

11
17 17 17 17

- 10 LO 2A

-6 1 2 8: 1 S W T C H ( F O R P W R M E T E R 2) 260 T O 30 C O N V E R T E R

1
S IG NA L S O URCE E X A M P L E : i f 2 " i f 2 _ si g src g rg " (g r= g re g , c h , n o i se )
23 -3 -3

-6
-10

-6 B A NDP A S S 1. 0 - 1. 5 G H Z 1750 -6 - 20 FP -6 2G H Z LO W PASS -6 - 10 - 10 FP -6 2G H Z LO W PASS - 10 LO 4A 3 19 - 10 LO 3A - 10 - 10
11

3 W A P P 2 B O A R D 1A 4 C O R R E LA T O R -6 5 6 G A LF A NC

3

19

-6

-7

-3
500 M H Z LO W - P A S S 11
11

-3 -6
-10

11
-10
17 17 17 17

7 HA NK I NS 1 FP

23

- 20 B A NDP A S S 1. 25- 1. 75G H Z 1500 -6

FP

11 -7

-6

-3
500 M H Z LO W - P A S S

11 A LF A " A LF A 3" 4A
11

11
-10
17 17 17 17 11

-6 1 HA NK I NS 2 2 8: 1 S W T C H ( F O R P W R M E T E R 2) 3 W A P P 3 B O A R D 1A 4 C O R R E LA T O R -6 5 6 7 FP G A LF A V I S I T O RS ' RO O M NC

I F S W I T CH P O L A RA CK 4 ( S E E S C H E M , S H E E T 2) IF AMP PO L A RA CK 4 ( S E E S C H E M , S H E E T 1) - 10 18 1, 2, . . . 11dB -6 10, 20, 30dB - 20 FP I F CH A T O V I S I T O RS ' RO O M 1. 0 - 2. 0 G H Z " 1500" -6

23

-3 B A NDP A S S 1. 5 - 2. 0 G H Z 1250 -6

- 20

-6
-10

-6 -3
11

1. 0 - 2. 0 G H Z - 20

FP

-6

11
-10
17 17 17 17

0. 5- 1 G H Z
0 .5 - 1 .0 BPF

-7 -1 0

-3
0 .5 - 1 .0 BPF

" 750" 0. 5 - 1. 0 G H Z " 750nb" -3

18

-6
-10

18 -6

750 1500 750 V LB I LO B

720- 780
0 .7 2 - 0 .7 8 BPF

-3

0. 5 - 1. 0 G H Z A LF A " A LF A 4" 6A V LB I 0. 5- 1G H z O UT

11

A MP S 3 & 4 P OL A RA CK 4
-10

11
17 17 17 17

0. 2- 0. 4 G H Z " 300" - 3

-6 1 2 NC 8: 1 S W T C H ( F O R P W R M E T E R 2)

3

C A S C A D E O F 1, 2, O R 3 10. 5dB A M P S

G A IN: E X A M P L E : i f2 " i f2 _ g a i n 1 4 , 1 0 " (C H A N N E L A : 1 4 d B , C H A N N E L B : 1 0 d B ) R A N G E : -1 1 T O 3 0

INP i f2 i f2 i f2 i f2 i f2

UT "if "if "if "if "if

DIS T 2_inp 2_inp 2_inp 2_inp 2_inp

RIB UT O R: f rq 1 5 0 0 " f rq 7 5 0 " f rq 7 5 0 n b " f rq 3 0 0 " f rq a l f a "

V L B I S IG NA L S O URCE : E IT HE R i f2 " i f2 _ vl b a i n p 7 5 0 " O R i f2 " i f2 _ vl b a i n p 1 5 0 0 "
N O M . 200 M H Z - 400 M H Z

6

18 - 10dB

11

-6
-10

-1 0

FP

-6 -9
11

3 W A P P 4 B O A R D 1A 4 C O R R E LA T O R -6 5 6 7 FP G A LF A NC NC

-3 -6
11

11
-10
17 17 17 17

4

-10

N O M . 200 M H Z - 400 M H Z

CO RRE CT S WIT CH 2 P O S IT IO NS A R E S E L E C T E D B Y i f 2 _ i n p f rq

http://www.naic.edu/science/genera linfo_set.htm

DOWNSTAIRS IF/LO SYSTEM

7


POWER = kT2 B
FILTER: BANDWIDTH = B

POWER = kT1 B

R @ T1

R @ T2

RESISTOR AT 290 DEG.K (17 DEG C)

READS -114dBm i.e. 10^(-11.4) mW.
FILTER : 1 MH Z BAN D WID TH

POWER METER

EXAM PLE

WHITE NOISE PRODUCED BY RESISTORS

S_in
Gamp

S_out = G S_in + G kTamp

IMAGINARY RESISTOR A T T E MP E R A T U R E T a mp

AMPLIFIER WITH EQUIVALENT NOISE SOURCE

8


G1 T 1 G1 T1 T2 G2

G1 G2 T 1 + T 2 G2 G3 T3

T 1 G1 G2 G3 + T 2 G2 G3 + T 3 G3

3-AMPLIFIER CASCADE
T1 G1 G2 G3 + T2 G2 G3 + T3 G3

= (T1 + T2/G1 +T3/G1G2 ) G1G2G3

G1G2G3

EQUIVALENT AMPLIFER

T1+T2/G1+T3/G1G2

NOISE ANALYSIS FOR CASCADED AMPLIFIERS

ATTENUATOR AT PHYSICAL TEMPERATURE Tphys

RESISTOR AT PHYSICAL TEMPERATURE Tphys

=
Tattn
Pout = kTphys

Gattn

Pout = kTphys Gattn + kTattn Gattn

Tattn = Tphys(1/Gattn -1)
FINDING THE NOISE TEMPERATURE OF AN ATTENUATOR

9


N o is e F ig u r e - A lte r n a te w a y to e x p r e s s th e in te r n a l n o is e o f a n a m p lifie r :

N F a m p = ( 2 9 0 + T a m p ) /2 9 0 = 1 + T a m p /2 9 0
N o te : to th e to th e of 290 N F is th e r a tio o f th e o u tp u t n o is e p o w e r p a r t o f th e o u tp u t n o is e p o w e r a ttr ib u ta b le s o u r c e w h e n th e s o u r c e h a s a te m p e r a tu r e K.

10


Berkshire Technologies, Inc.

700 MHz Bala nce d Am plifier Leif Roschier ¤ a nd Pertti Ha konenH elsink i University of Technology,

NRAO 100 GHz 75-110 GHz

LOW-NOISE AMPLIFIERS

K. W. Kobayas hi, D. K. Umemoto, T R. Block, A. K. Oki, and D. C . Streit

11