Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.mrao.cam.ac.uk/projects/aavp/presentations/Gauffre_Fast_ADC_Developments.pdf
Äàòà èçìåíåíèÿ: Thu Dec 9 19:47:16 2010
Äàòà èíäåêñèðîâàíèÿ: Tue Oct 2 17:45:16 2012
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: ï ï ï ï ï ï ï ï ï ï ï ï ï
LAB : Laboratoire d'Astrophysique de Bordeaux

Fast Analog to Digital Converter Developments
Stephane GAUFFRE, Philippe CAîS, Benjamin Quertier Laboratoire d'Astrophysique de Bordeaux

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

Outline ADC designed by LAB
H er s c hel ALMA

Ultra fast ADC
Current Design Future Design

AAVP context
Low Power ADC

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

ADC designed by LAB:
­ Flash architecture used for our applications. Ultra fast ADC (>1GS/s) Large analog bandwith (1 octave) Low resolution (6-bit)

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

ADC designed by LAB: Herschel Space Observatory (HiFi)
­ ­ ­ ­ Cooperation between three groups from Bordeaux (LAB, IMS) and Toulouse (CESR), 2002 2-bit ADC at 500MS/s designed in 0.8µm BiCMOS Technology from AMS for ESA space program (HSO). Flash architecture Power consumption: 280mW

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

ADC designed by LAB: ALMA
­ ­ ­ ­
VH

Cooperation between two groups from Bordeaux (LAB, IMS), 2005 3-bit ADC at 4GS/s designed in 0.25µm SiGe BiCMOS Technology from STm Flash architecture Power consumption: 1.45W
+ -

D

D

2-4 GHz

Amplifier

+ -

D

D D-Latch Output buffer

D0

OTA Bandgap Adaptater amplifier

+ -

D

D

+ -

D

D

F DL encoder

D-Latch

Output buffer

D1

+ -

D

D D-Latch Output buffer

D2

4 GHz 0 dBm

Clock buffer

+ -

D

D

VL

+ -

D

D

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

ADC designed by LAB: ALMA
­ ­ ­ ­ The 4GS/s 3-bit ADC runs with 3 1:16 DMUX circuits designed by LAB with STm 0.25µm SiGe BiCMOS technology. Total power consumption: 1.45+0.7â3=3.55W (power supply at 2.5V) Wafers specialy manufactured for the ALMA project (>800 sampler chips and >2000 DMUX chips) Around 300 Digitizer modules assembled, tested and validated to equip 66 a n te n n a s

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

Ultra fast ADC:
­ ­ ­ ­ To design an ultra fast ADC, we must find a finer technology. We can have access to the 65nm CMOS technology from STm via the broker in IC, the CMP. multi-projects wafer Ft=210GHz hi gh s peed c om ponent CMOS tech. & Power supply=1.2V low power consumption

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

Ultra fast ADC: Track And Hold Circuit (65nm CMOS techn.)
­ ­ ­ ­ ­ ­ Cooperation between three groups from Bordeaux (LAB, IMS, CENBG), 2010 8GS/s Track and Hold circuit with an analog bandwith of 7.5GHz (0.5-8GHz) Designed with 65nm CMOS technology from STm ENOB4.5bit, Input Refllexion<10dB until 13GHz Chip-On-Board Power consumption: 160mW (power supply at 1.2V)

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

Ultra fast ADC: 8GS/s 3-bit ADC (65nm CMOS techn.)
­ ­ ­ ­ 8GS/s 3-bit flash ADC with an analog bandwith of 8GHz and internal 1:4 DMUX. Designed with 65nm CMOS technology from STm Chip-On-Board Power consumption: 500mW (simulated result) The layout drawing files were sent to STm foundry last week.

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

Ultra fast ADC: 8GS/s 3-bit ADC (65nm CMOS techn.)
­ The outputs speed rate is too high (2GS/s) to capture the synchronous digital data with standard FPGA External DMUX circuits are needed to use this ultra fast ADC Total power consumption increases (>3W)

Internal DM UX

DM UX

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

Ultra fast ADC: Future design in 65nm CMOS Technology
­ ­ In 2011, a new 8GS/s Track and Hold circuit will be designed to improve the linearity in order to obtain an ENOB superior to 6 bits. This new Track and Hold circuit will be: designed with 65nm CMOS technology from STm. used in a new ultra fast ADC. · A 8GS/s 6-bit flash ADC (2012): prototype version in which will be i m p l e m e n te d Calibration circuit to compensate the comparator offsets deviation due to the small size of the NMOS transistor Add scrambler circuit to mix a pseudo random pattern to digital data in order to capture ADC outputs using high speed receivers of standard FPGA (6.5GS/s) Internal 1:4 DMUX will be replaced by 1:2 DMUX No need of external DMUX Chip-On-Board · A 8GS/s 6-bit flash ADC (2013): Final version Packaged version (fcBGA)

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

Ultra fast ADC: 8GS/s 6-bit ADC (65nm CMOS techn.)
­ Rough estimation of power consumption if 6-bit designed with the same flash architecture as 3-bit ADC (with scrambler circuit and internal1:2 DMUX circuits)
1750 1500 1250 1000 750 500 250 0 2 3 4 5 6 7

Power in mW

Resolution (Number of bit) AAVP workshop 8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

AAVP Context
­ ADC technical parameter requirements: Resolution : 4-6bit Sample rate: 3GS/s Bandwith: · AA-lo: 70MHz to 450MHz · AA-mid: 400MHz to 1.4GHz Power: <100mW

Our design is not optimized for the AAVP requirements Higher sampling rate: 8GS/s Ultra large bandwith: 8GHz

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

AAVP Context: what could be done
­ Design an ADC for AAVP program Which ADC architecture is suitable for AAVP program? · Sampling rate: The flash achitecture is the fastest · Low power state-of-the-art in 65nm CMOS technology « A 6-bit 5GS/s Nyquist A/D converter in 65nm CMOS technology », Choi, June 2008: flash architecture, analog BW: 2.5GHz, power consumption: 320mW · The design of a low power 3GS/s 6-bit flash ADC is possible with the 65nm CMOS technology.

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

AAVP Context: what could be done
­ Design an ADC for AAVP program Which ADC architecture is suitable for AAVP program? · Folding architecture?

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

AAVP Context: what could be done
­ Design an ADC for AAVP program Folding Architecture Number of comparator: Full Flash ADC: 2N-1 Folding ADC: (2N-1)/2 3-bit flash ADC 7 comparators 3-bit folding ADC 3 comparators The folding architecture seems to be the most relevant for AAVP

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

·

AAVP Context: what could be done
­ Design an ADC for AAVP program Which ADC architecture is suitable for AAVP program? · If the flash architecture is replaced by folding architecture, the power consumption of ADC can be reduced by about 30% · Folding state-of-the-art in 45nm CMOS technology « Design of a 12.5GS/s 5-bit folding A/D converter », Surano, 2009: analog BW: 6GHz, power consumption: 53mW (simulated result) The design of a low power 3GS/s 6-bit ADC using a flash folding architecture is possible with 65nm CMOS technology LAB has access to the 65nm CMOS technology from STm The design of an ADC for AAVP could be included in our roadmap Funding: For design: 200k is needed to design such ADC: 3 FTE + 2 foundry runs (prototype and final version) For production: wafer cost: >250k (to be confirmed), depends on the number of ADC needed

AAVP workshop

8-10 December 2010, University Of Cambridge


LAB : Laboratoire d'Astrophysique de Bordeaux

Thank you for your ATTENTION
AAVP workshop 8-10 December 2010, University Of Cambridge