| 
Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ
îðèãèíàëüíîãî äîêóìåíòà
: http://www.mrao.cam.ac.uk/~rachael/systems/Summary1.html  
 Äàòà èçìåíåíèÿ: Tue Feb 10 15:00:49 2004 Äàòà èíäåêñèðîâàíèÿ: Tue Oct 2 04:54:50 2012 Êîäèðîâêà: Ïîèñêîâûå ñëîâà: asteroid  | 
1.  
Linearity á convolution:
á á á á á á á á á á á á á á á á á á á á á á á   
2. Hence in the frequency domain we have a filter:
á á á á á á á á á á á á á á á á á á á á á á á   
3.  
á is a general eigenfunction of the system 
á hence we can define the Laplace Transform:
á á á á á á á á á á   
4. Inverse Laplace Transform most easily done by looking up a table.
5.  
Represent a function
graphically by means of a pole-zero plot.
This gives an easy route to visualizing the frequency
response (behaviour when á ). Magnitude is the product of the distances
from a point on the axis to each of the zeros, divided by the product of the
distances to the poles. 
6.  
Hence when á is close to the imaginary part of a pole, we
have a resonance.á  
7. A linear system is stable if it has no poles in the Right Half-Plane
8. Test with Routh-Hurwitz criteria:
a. All coefficients must have the same sign.
b.  
For a cubic,  
9. Alternatively test with Nyquist criterion: locus of GH must not encircle the point (-1,0).