Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.mrao.cam.ac.uk/~bn204/alma/casata/flex-data-access.html
Дата изменения: Mon Apr 4 13:47:51 2016 Дата индексирования: Sun Apr 10 10:11:46 2016 Кодировка: ISO8859-5 Поисковые слова: п п п п п п п п п п п п п п п п п п п п п п п п п п п п п р п р п р п р п р п п р п п р п п р п п р п |
The CASA table tool allows access to all data contained in measurement set format. It is however a little cumbersome to use often in scripts and very cumbersome and verbose on the command line.
For this reason I have sketched out a simple, python-orientated,
wrapper for data access in casata. This wrapper is contained in the
module tools.data
. This shows the basics of how it should work –
patches to make it better would be very welcome.
The key features that I would like to have in this wrapper are:
Nice, short names for commonly used parameters. So “ANTENNA1” is “a1”, etc
Flexibility to get multiple columns at once. So by asking for:
cols=["TIME", "DATA"]
one gets (unsurprisingly) both the time and the data....
Automatic interpolation of subsidiary tables onto the time base of the main table. So, if you ask for:
cols=["DATA", "POINTING_OFFSET"]
then the pointing offsets pulled out of “pointing” sub-table and interpolated to the time base of the main table
Automatic join of common parameters. So if you ask for:
spw=1
You get spectral window 1
The basics are there now, but to make it really useful I need patches from people using it!
Here are some examples with uid___A002_Xa048f_X1.ms.
Get timestamps and visibility data on baseline 0-1 for spw 1:
>>> msin="/home/bnikolic/data/almagen/uid___A002_Xa048f_X1.ms"
>>> time, visdata=data.vis(msin, ["TIME", "DATA", ], spw=1, a1=0, a2=1)
>>> visdata
array([[[ 0.00281871-0.01850254j, 0.00162236-0.01870679j,
0.00240437-0.01870679j, ..., 0.00316449-0.01151703j,
0.00369846-0.01152579j, 0.00382977-0.01135217j]]])
Get and plot pointing offsets:
>>> time, point1, point2 =data.vis(msin, ["TIME", "POINTING_OFFSET", ], spw=1, a1=0, a2=2)
>>> pylab.plot(time, point1[0])
[<matplotlib.lines.Line2D instance at 0x3efdc68>]
>>> pylab.plot(time, point2[0])
[<matplotlib.lines.Line2D instance at 0x3ad4098>]
>>> pylab.savefig("uid___A002_Xa048f_X1_point.png")
Get specific sub-scans (!)
>>> time, visdata=data.vis(msin, ["TIME", "DATA", ], spw=1, a1=0, a2=2, subscan=1)
>>> pylab.plot(time, numpy.abs(visdata[0,0,:]))
[<matplotlib.lines.Line2D instance at 0x79d0ea8>]
>>> time, visdata=data.vis(msin, ["TIME", "DATA", ], spw=1, a1=0, a2=2, subscan=2)
>>> pylab.plot(time, numpy.abs(visdata[0,0,:]))
[<matplotlib.lines.Line2D instance at 0x79d0f38>]
>>> time, visdata=data.vis(msin, ["TIME", "DATA", ], spw=1, a1=0, a2=2, subscan=3)
>>> pylab.plot(time, numpy.abs(visdata[0,0,:]))
[<matplotlib.lines.Line2D instance at 0x3690c20>]
>>> time, visdata=data.vis(msin, ["TIME", "DATA", ], spw=1, a1=0, a2=2, subscan=4)
>>> pylab.plot(time, numpy.abs(visdata[0,0,:]))
[<matplotlib.lines.Line2D instance at 0x44a6dd0>]
>>> time, visdata=data.vis(msin, ["TIME", "DATA", ], spw=1, a1=0, a2=2, subscan=5)
>>> pylab.plot(time, numpy.abs(visdata[0,0,:]))
[<matplotlib.lines.Line2D instance at 0x3d6bc68>]
>>> pylab.savefig("uid___A002_Xa048f_X1_subs.png")
Here are some new examples on other data set:
Obtaining the closure phase:
>>> data.closurePh(msin, [0,1,3], spw=7, field=0)
array([[[ 52.87974425, 54.13733906, 54.97565168, 52.62370937,
52.64148397, 54.30899442, 53.93281406, 52.61754189,
52.61760492, 56.32891778, 55.98011178, 54.28151425,
(... rest of data here)