Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mso.anu.edu.au/~chiaki/works/TEN80301.pdf
Дата изменения: Fri Feb 8 09:55:15 2008
Дата индексирования: Tue Oct 2 02:48:38 2012
Кодировка:

Поисковые слова: star formation
Q

181 8588

Q

Q

Q

2 21 1

e-mail: chiaki@th.nao.ac.jp

Q Q Q Q Q QQ Q Q Q Q Q Q Q Q

Q Q Q Q QQ Q QQ Q Q Q Q Q QQ Q Q QQ Q

Q Q Q

1.
WMAP Q Q Q CDM QQ Q QQ Q Q Q QQ Q Q QQ Q QQ Q Q Q Q
101 Q

Q Q Q Q QQ QQ Q Q Q Q Q Q Q Q Q QQ Q
4), 5)

QQ QQ QQ

Q Q QQ Q QQQQQ QQQ Q QQ

Q Q QQ

QQQQ QQQQ Q

QQ QQ Q Q Q Q QQ QQ Q Q QQ QQ Q Q Q Q Q Q QQQQ Q Q Q

Q

QQQ Q

QQQQ Q

QQQQ Q QQ Q QQQ QQQQ Q QQQ Q Q Q Q Q Q Q Q Q Run Q QQ
2) 1)

Millennium 100 Q QQ QQ Q QQ Q Q
3)

QQ QQQ Q

500 Mpc N QQ Q Q Q QQ QQ Q Q 90 QQ Q Q QQ Q QQ Q QQ QQ Q QQQ

QQ QQQQ

QQQ QQQQ

QQ

Q Q QQQ

QQ

QQ Q

QQQQQQ QQ
3Q

QQ QQQ Q

QQ Q

115

TEN80301 QQQQ

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb

8

1 1: 5 0: 4 1 2 0 0 8 Page 1


QQQQ Q Q QQ Q QQ Q QQ QQ
6) 10)

QQQQ Q Q QSO Q QQ

QQ QQ Q Q Q QQ Q QQ QQQQ Q

QSO QQ Q QQQQ

QQ Q QQ QQ

2.
Q Q Q QQ QQ Q QQ QQ Q Q IMF) QQ IMF Q Ia Q QQ QQ Q 1970 Q Q Q1 Q QQ Q II Q Q Q Q QQ QQ Q 8M QQ Q 11 Q Q QQ 2.1 Q Q Q

Q Q Q Q Q

3Q Q Q 20 M H He

(1) Ia Q II Q Q

Q Q Q Q Q Q Q QQ QQ Q Q (2) (3) Q

QQQ QQ (initial mass function;

QQ

Ib, Ic Q Q QQQQ

II Q Q Q

Q Q QQ

QQ Q QQ

Q1

QQ Q Q

QQQQ Q Q Q

QQ Q QQ Q

Q2

Ia Q Q Q Q

Q Q Q

Q Q Q

116

Q

2008

3Q

TEN80301 QQQ

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb

8

1 1: 5 0: 4 1 2 0 0 8 Page 2


Q Q Q Q Q Q Q Ia Q Ia Q Q Q Q QQ 2 Q Q QQ Q Q Q Q Q
14)

2.2 3 Q 10 QQQ Gyr Q Q Ia Q Q 1M QQ Q Q Q Q 1 200 Q Q QQ Q QQ Q Q Q Q Q Q Q Fe Q Q Q Q QQ Q QQ QQ Q QQ Q Q Q Q Q Q QQ Q Q Q Q Q QQ Q Q 1 QQ QQ Q Q Q Q Q Zn QSO Q Q Q QQ Q 20M Q
117
67

QQQ Q Q Q QQ

QQ QQ Q (1) QQQ Q QQ Q (2)

Q Q Q [a/Fe] Q CNO QQ 1 Q Q Q Q Q Q ([Fe/H] Q 1.5 Gyr Q Ia Q Q 1)

Q

II Q Q 10
6

QQQQ Q Q

QQ QQ Q II Q Q

Ia

[(Zn, Co)/Fe] Na, Al, Cu Q Q

QQQ (3) [Fe/H]

Q Q Q Q QQ Q Q
12), 13)

Ia Q [Mn/Fe] Q Q Q QQ Q Q QQQ [a/Fe] Q Q QQ Q Q QQQ Q Q Q 2 Q Q (iii) Q Q Q Q QQ Q Q QQ Q Q QQ Q Q Ia Q Q Q Q Q ([X / Fe] Q

QQ 0)

Q QQ Q

[a/Fe]

[Fe/H] 0 QQ

one-zone model QQ Q QQ

Q Q

0.9 6 M

Q

Q Q

Ia Q

Q QQ 11

Q Q QQ

Ia Q Q Ia Q Q 0.1 Gyr
14)

Q X

Q Q QQ

Q QQ Q Q Q Q [Fe/H] Q

Q Ia Q
13)

QQ

[a/Fe] Q (ii) QQ QQ Q

Q aQ Ni

II Q Ia Q Q Q

O, Ne, Mg, Si, S, Ca, Ti Cr, Mn, Co, Zn, Co

(i) QQ Q

Q

15)

QQ

QQ QQ

QQ

101 Q

3Q

TEN80301 QQQ

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb Q

8

1 1: 5 0: 4 1 2 0 0 8 Page 3


Q3

QQQ QQQQ Q Fe] log X/Fe log X /Fe

QQ 0 Q

Q QQ

QQ QQ

QQ Q QQ QQ [X/

QQ Q Q Q QQQ QQ dex) Q QQQQ Q QQ QQ Q Q QQQ QQ
118
16)

QQQQ 130 260M QQ QQ [a/Fe] QQ Q Q QQ Q Q QQ Q QQ a QQ QQQQ Q Q Fe [a/Fe] Q QQ Q Q QQ Q Q Q Q Q Q Q Q QQ Q Q Q (0.05 Q QQQ Q Q QQQ 2.3 Q Q QQQQQQ Q QQQQ brock) IMF Q QQ QQQQQ (Pair Instability) QQ

QQQQ

Q Q QQQ

Q

QQ QQQQQ

Q

QQQ

QQQQ QQQ Q QQQQ QQ QQ Q Q Q

QQ Q (building Mn, Eu

QQQ QQ Q Q QQQ QQQ Q Q QQ Q Q QQ QQ QQQQ QQQQ QQQQ Q
Q

QQ Q

Q QQ Q

QQ

G-dwarf Q QQ QQQ QQ

QQQ Q
2008 3Q

TEN80301 QQQQ

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb

8

1 1: 5 0: 4 1 2 0 0 8 Page 4


Q QQ

Q QQ Q Q Q QQ G-dwarf QQ Q

QQ Q Q QQQQ Q QQ Q QQ Q QQQ Q QQ Q QQ Q CDM QQQ Q Q Q Q G-dwarf QQ Q G-dwarf Q QQQ (iii) Q Q QQQ Q Q QQ 46 Q Q Q Q Q Q QQ QQQ Q QQ QQ Q QQ Q Q QQ QQQ Q Q Q Q Q (i)

QQ Q QQ QQ Q Q Q

Q Q Q

Q QQQ

QQ Q QQQQQQ

Q QQ

QQ Q Q

QQ QQ QQ Q QQ QQ QQ QQ Q

QQ Q QQ Q Q Q Q QQ QQQ QQQ Q

Q Q

3.
Q QQ QQ Q Q Q Q CDM Q 2 963 Q
17)

Q Q QQ Q QQQ QQ QQQQ Q Q4 Q Q QQ QQ 10 Mpc QQ Q QQ

(ii) QQQ QQ Q

QQQ

QQ ([Fe/H] 0) Q QQ Q

Q

QQ Q

Q4 Q Q Q 101 Q Q

Q

QQ QQ QQQQQ Q

QQ Q

Q Q

Q Q

QQ Q

Q QQ

QQ Q

Q QQ

Q3Q

119

TEN80301 QQQQ

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb

8

1 1: 5 0: 4 1 2 0 0 8 Page 5


Q Q Q Q Q QQ Q Q Q verging flow (iii) Jeans Schmidt Q SFR QQQ 10 QQ QQ QQQQ Q Q v r Q tdyn
1.5

Q Q Q Q Q Q

Q Q Q QQ

QQ QQQ

Q Q Q QQ Tree SPH R(t) QQ Q Q t
dyn,

QQQ Q QQQ Q QQQ Q Q QQQ Q Q QQ Q Q QQ QQ 3.1 QQ Q QQ Q QQ QQQQ Q QQ Q
18, 19)

QQ QQ

Kroupa IMF QQ EZ(t) Q Q Q Q Q Q QQ QQ Q

Q

QQQ GRAPE Q Q

one-zone model

QQQ tsound Q Q QQ Q Q Q Q Q QQQ Q Q

QQ (i) concool

0, (ii) rapid cooling t Q Q Q

4)

QQQQ

dynamical timescale
26)

Q QQ Q

Q Q

QQ QQ
57

10 M

Q Q 1996 QQQ Q z 1.4 UV Q

Q Q IMF Q Q Q

QQ

Q

Salpeter (1955) Q Kroupa (2007)

0.5M

Q5 Q QQ

QQQQ QQ

Q QQ QQ QQQ QQ Q QQ QQ

Q

QQQ Q

Q QQ

Q QQQ

QQ Q Q

QQ

QQ Q 2008 3Q

120

TEN80301 QQQQ

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb

8

1 1: 5 0: 4 1 2 0 0 8 Page 6


Q Q Q z 23 QQ CDM Q Q Q QQ Q Q Q QQ Q Q5 Q Q QQ Q Q Q Q QQ Q Q Q IMF QQ Q Q Q QQQ QQQQ QQQ 3Q 3 Q QQ QQ Q QQ Q Q Q QQQ QQQQ QQQ QQQ Q Q Q z 56 QQQQ QQ Q Q QQ QQ Q Q Q Q QQQ

QQ QQ Q

z 3.2

2

Q Q

Q

QQ

1Q

QQ Q QQQQ QQ Q QQ Q QQQ Q 6b Q QQ QQ Q QQQ Q QQQ QQ Q Q z3 z3 Q QQ Q QQ Q Q QQQQ 10 M Q QQ QQ
89

Q Q

Q QQ QQ Q Q QQ QQ QQ Q QQ QQ QQ QQ Q Q QQ 1011M 10 M Q QQ Q QQQ Q Q Q Q Q QQ QQ Q Q
10

Q Q 6a Q Q QQ

Q

QQQ

QQ

Q

QQ (10 Mpc) QQ QQ

QQ QQ QQ QQ

Lyman-Break, ERO, BzK, submm Q QQ QQ QQ Q QQ Q

Q6 Q

Q

QQQQ QQ Q QQ QQ QQQ QQQ

M 10 Q QQ QQQQ QQ

Q

11

QQ

10 Q

10

Q

109 Q

Q

Q 108 QQ

Q

Q 101 Q

Q3Q

121

TEN80301 QQQQ

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb

8

1 1: 5 0: 4 1 2 0 0 8 Page 7


z

5

1012 M

QQ QQQ Q

100 Mpc QQ Q Q Q Q

1Q Q Q Q Q Q Q

Q QQ QQQQ Q Q Q Q Q merger Q QQ Q Q QQ QQ QQ

Q
25), 26)

Q Q Q Q Q Q Q QQ Q dry Q Q Q Q Q Q

QQ QQ QQ Q
20)

Q QQ Q QQQ

Q Q

QQ Q QQQ Q QQ Q Q

QQ

(down-sizing e#ect)

wet merger Q QQQ QQ QQ Q
27)

Q Q Q Q QQ X QQ Q
21)

QQ

Q Q Q

Q QQ Q QQ QQQ Q Q

QQQ Q Q QQ

Q 0.2 Ia Q Q Q Q QQ Q QQQQ Q Q QQ Q 0.1

Q (active galactic nuclei; AGN) Fe Q Ia Q Q QQ 3.3 QQ QQ Q Q Q 23 QQQ Q Q Q QQ Q Q 0.3 0.2,
24)

[Mg / Fe]

Q Q QQ Q

QQ

Ia Q Q QQ Ia Q Q Q QQ QQ QQ Q SPH Q Q Q Q

20 Gyr Q QQQ

QQQ Q Q Q

QQ

dry merger wet merger QQ
22)

QQQ Q Q 3.4 Q Q QQ QQ Q Q Q QQ Q Q QQ Q

merger QQQ QQ Q QQ QQ QQ QQ QQ Q Q

Q Q Q QQQ QQ Q 10 Q Q QQQ QQQ

Q QQ Q Q Q Q Q QQ Q

Q QQQ Q

QQQ (intergalactic medium; IGM) QQ Q Q 7, Q QQ Q QQ Q 10
QQ 2008

D log Z/D log r Q Q QQ

Q

Q 10 Q
3Q

Q
122

Q QQ

TEN80301 QQQ

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb

8

1 1: 5 0: 4 1 2 0 0 8 Page 8


Q7

QQ Q

Q

QQ

QQ

QQ Q

QQ

QQ QQ

QQ

QQ QQ QQ

Q Q

Q Q
33)

QQ

Q

QQ QQ QQ QQ Q QQ Q Q Q QQ
28), 29)

Q Q

Q Q

X

Q Q 50 QQ Q

20 M82 QQ Q QQ Q QQ Q 3.5 QQQQ QQ Q z3 Q Q

Q Q

QQ

Q

QQQQQ

Q QQ Q QQQQQ Q QQ

QQ QQ QQ Q QQ

QQ Q QQ Q 7, QQ QQ QQQ Q Q Q Q QQ Q QQ Q

Q QQ Q QQ Q Q (1) Q 1 2Z QQ
34)

QQ

Q 20 Q QSO (2) Lyman break Q Q

QQ Q Q Q

QQ

Q

30)

Q Q Q mo-

Q Q

Q Q Q Q Q Q Q Q

Q 0.5 Z Q QQ

QQ

Q Q

Q Q QQ IMF QQ Q

QQ QQ
31)

QQQQ (3) Q QSO Q ped Lyman a Q
35)

QQ

mentum-drivin wind

QQ Q

Q Q Q QQQ QQ
123

DamQ

Q Q Q

Q Q

1/10 1/100Z

Q (4) QQ Lyman a

Q 1970
101 Q

QQ Q
3Q
32)

one-zone model

Q

Q

TEN80301 QQQ

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb

8

1 1: 5 0: 4 1 2 0 0 8 Page 9


Q
36)

Q Q

Q

1/100 1/1,000Z Q QQ Q Q QQ Q Q Q QQ VLT Q Q Q Q Q Q QQ Q Q Q Q QQ QQ Q Q Q Q QQQ Q Q Q Q Q Q Q Q QQ (5) QQ Q Q

Q QQ QQ Q QQQ 30 m Q

QQ Q Q SINFONI MOIRCS Q QQ AO

Q Gemini

Q 8 10 m QQ Q

QQ

Pair Instability QQQQQ
37)

Q Q III Q

QQ Q Pre-enrichment

QQ Q FMOS Q

Q QQ

QQ Q Q

Q Q Q Q QQ QQ Q QQQ Q QQ Q QQ Q QQ QQQ
38)

QQQ

Q Q

QQ

Q Q QQ Q Q Q Q Q Q QQ Q Q Q Q Q Q Q Q Q Q Q QQ QQ QQ QQQQ Q Q HER-

GAIA, JASMINE MES, WFMOS QQ Q QQQ Q

QQQQ

Q

4.
QQQ QQ QQ Q QQ QQ Q SAURON Q Q Q
124

Q Q Q QQ Q Q Q Q Q Q QQ Q QQ QQ QQ QQ WHT-4 m Q Q QQ QQ Q QQ QQ QQ Q QQ QQ Volker Springel Q IFU Q QQ Q Q QQ Q Q Q QQ Q Q QQQ Q Q Q Q Simon D. M. White Q QQ
Q 2008

Q QQ QQ Q

Q

Q Q

QQ Q Q Q

Q

QQ QQ

QQ Q Q

Q Q

QQ Q

Q
3Q

TEN80301 QQQ

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb

8

1 1: 5 0: 4 1 2 0 0 8 Page 10


Q Bunker Q

Q Q Q

Philipp Podsiadlowski, Rob Q Q Q Bernard E. J. Pagel Q

Kennicutt, Max Pettini, Ken Freeman, Andrew

25) 26) 27) 28) 29) 30)

GRAPE Q Q

Q

1) Springel V., et al., 2005, Nature 435, 629 2) Lemson G., et al., 2006, astro-ph/0608019 3) Nagashima M., Yahagi H., Enoki M., Yoshii Y., Gouda N., 2005, ApJ 634, 26 4) Katz N., 1992, ApJ 391, 502 5) Steinmetz M., Mu ler E., 1994, A&A 281, L97 Ёl 6) Bekki K., Shioya Y., 1997, ApJ 486, 197 7) Mori M., Yoshii Y., Tsujimoto T., Nomoto K., 1997, ApJ 478, L21 8) Nakasato N., Nomoto K., 2003, ApJ 588, 842 9) Kawata D., Gibson B. K., 2003, MNRAS 340, 908 10) Okamoto T., Eke V. R., Frenk C. S., Jenkins A., 2005, MNRAS 363, 1299 11) Nomoto K., et al., 2007, 12) Hachisu I., Kato M., Nomoto K., 1996, ApJ 470, L97 13) Hachisu I., Kato M., Nomoto K., 2007, ApJ, submitted, astroph/0710.0319 14) Kobayashi C., Tsujimoto T., Nomoto K., Hachisu I., Kato M., 1998, ApJ 503, L155 15) Kobayashi C., Umeda H., Nomoto K., Tominaga N., Ohkubo T., 2006, ApJ 653, 1145 16) Cayrel R., et al., 2004, A&A 416, 1117 17) Kobayashi C., Springel V., White S. D. M., 2007, MNRAS 376, 1465 18) Madau P., Ferguson H. C., Dickinson M. E., Giavalisco M., Steidel C. C., Fruchter A., 1996, MNRAS 283, 1388 19) Connolly A. J., Szalay A. S., Dickinson M., Subba Rao M. U., Brunner R. J., 1997, ApJ 486, L11 20) Cowie L. L., Songaila A., Hu E. M., Cohen J. G., 1996, AJ 112, 839 21) Di Matteo T., Springel V., Hernquist L., 2005, Nature 433, 604 22) Naab T., Burkert A., Hernquist L., 1999, ApJ 523, 133 23) Nakasato N., Kobayashi C., 2003, Q Q 96, 526 24) Kobayashi C., Arimoto N., 1999, ApJ 527, 573

31) 32) 33) 34) 35) 36) 37) 38)

Kobayashi C., 2004, MNRAS 347, 740 Kobayashi C., 2005, MNRAS 361, 1216 Thomas D., Maraston C., 2003, A&A 401, 429 Tremonti C. A., et al. 2004, ApJ 613, 898 Erb D. K., Shapley A. E., Pettini M., Steidel C. C., Reddy N. A., Adelberger K. L. 2006, ApJ 644, 813 Gallazzi A., Charlot S., Brinchmann J., White S. D. M., Tremonti C. A., 2005, MNRAS 362, 41 Oppenheimer B. D., Dave ., 2006, MNRAS 373, 1265 ґR Larson R. B., 1974, MNRAS 169, 229 Arimoto N., Yoshii Y., 1987, A&A 173, 23 Pettini M., et al., 2001, ApJ 554, 981 Prochaska J., Gawiser E., Wolfe A. M., Castro S., Djorgovski S. G., 2003, ApJ 595, L9 Schaye J., Aguirre A., Kim T., Theuns T., Rauch M., Sargent W. L. W., 2003, ApJ 596, 768 Songaila A., 2001, ApJ 561, L153 Frebel A., et al., 2005, Nature 434, 871

Chemodynamical Simulations of Galaxies
Chiaki KOBAYASHI National Astronomical Observatory of Japan, 2 21 1 Osawa, Mitaka-shi, Tokyo 181 8588, Japan Abstract : How do galaxies form and evolve ? Stars are like fossils; the history of a galaxy is imprinted on the kinematics and elemental abundances of the stars. The internal structures of galaxies are being observed with integral field spectrographs, and detailed observations for galactic archaeology in the Local Group will be obtained with multiobject spectroscopy and space astrometry missions. To clarify the underlying physical processes from such observational data, we simulate the chemodynamical evolution of galaxies including star formation, supernovae, and chemical enrichment. Stars in present-day massive galaxies formed in smaller galaxies at high redshifts, despite their late assembly times. Galactic winds blow e$ciently from low mass galaxies and eject heavy elements into the intergalactic medium, which results in the observed mass-metallicity relations of galaxies.

101

3

125

TEN80301

(Mark4)

M L 9 0 5 5C

AWS1

Fri Feb

8

1 1: 5 0: 4 1 2 0 0 8 Page 11