Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.meade.com/support/telewrk.html
Дата изменения: Wed Feb 1 23:00:35 2006
Дата индексирования: Mon Oct 1 20:25:13 2012
Кодировка:

Поисковые слова: massive stars
Meade Instruments Corporation - How Telescopes Work


 
Meade Instruments Corporation
Telescopes · Binoculars · Microscopes


 
Customer Support
 What You Can See Through a Telescope


The purpose of a telescope is not to magnify, as commonly thought, but to collect light. The larger the telescope's main light-collecting element, whether lens or mirror, the more light is collected. Importantly, it is the total amount of light collected that ultimately determines the level of detail—in a distant landscape or in the rings of Saturn—visible through the telescope. Although magnification, or power, is useful, it has no inherent effect whatever in determining the level of detail visible through a telescope.


The planet Saturn. This image shows Saturn approximately as it appears under good atmospheric conditions through the Meade ETX telescope at a power of 100x.


Example: Two telescopes, one with a main lens of 2" diameter (or aperture) and one with a main lens of 4" diameter are focused on the planet Jupiter. Both telescopes are set to use a power of 100 times (written as 100X). In the 2" telescope Jupiter's largest cloud belts are clearly observable; but in the 4" telescope the same cloud belts are seen to take on added structure and color, and smaller cloud belts are now visible that could not be discerned in the smaller instrument. It is the larger telescope's advantage in light-collecting capability that permits it to present more detail, more information, to the eye than is possible through the smaller telescope, irrespective of the powers employed on either instrument.




Types of Telescopes

All telescopes fall into one of three optical classes. The relative advantages of each of these telescope designs will be made clear below.


In the refracting telescope (a) light is collected by a 2-element objective lens and brought to a focus at F. By contrast the reflecting telescope (b) uses a concave mirror for this purpose. The mirror-lens, or catadioptric, telescope (c) employes a combination of both mirrors and lenses, resulting in a shorter, more portable optical tube assembly. All telescopes use an eyepiece (located behind the focal point, F) to magnify the image formed by the primary optical system.

Refracting Telescopes use a large objective lens as their primary light-collecting element. Meade refractors, in all models and apertures, include achromatic (2-element) objective lenses, in order to reduce or virtually eliminate the false color (chromatic aberration) that results in the telescopic image when light passes through a lens. Example: Meade NG-60, NGC-60, ETX-70AT, DS-2070AT.

Reflecting Telescopes use a concave primary mirror to collect light and form an image. In the Newtonian type of reflector, light is reflected by a small, flat secondary mirror to the side of the main tube for observation of the image. Example: DS-2114ATS, DS-2130ATS.

Mirror-Lens (Catadioptric) Telescopes employ both mirrors and lenses, resulting in optical configurations that achieve remarkable image quality and resolution, while housing the optics in extremely short, highly portable optical tubes. Example: Meade ETX-90AT, ETX-105AT, ETX-125AT, LX200GPS Series.

The Eyepiece


Eyepieces of varying focal lengths are used to obtain different powers.

With the telescope's primary optics (objective lens, primary mirror, or a combination of lenses and mirrors) having formed an image at the telescope's focus, the purpose of the eyepiece (consisting of two or more small lenses mounted in a metal barrel) is to magnify this image. Eyepieces are available in a wide range of optical configurations, barrel diameters, and focal lengths. It is the focal length of the eyepiece, in conjunction with the focal length of the main telescope, that determines the operating power of the eyepiece. (See How to Calculate Power)

Eyepieces are typically available in focal lengths between 4mm (high-power) and 40mm (low-power). Note that an eyepiece's optical type (MA: Modified Achromatic; PL: Plössl; SP: Super Plössl, etc.) has no effect on power, but does affect such characteristics as the field diameter seen through the telescope, color correction of the image, as well as image sharpness.

The Barlow Lens: Inserted into the telescope in front of the eyepiece, the Barlow lens effectively multiplies the focal length of the main telescope. A 2X Barlow lens doubles the main telescope's effective focal length, thereby doubling the power of each eyepiece used with the Barlow.

Diagonal Mirrors, Erecting Prisms, and Viewfinders: A variety of telescope accessories are either supplied as standard equipment or available optionally, depending on the telescope model.


A 2X Barlow lens doubles the power of every eyepiece with which it is used.
The diagonal mirror (a) diverts light to a 90 degree angle for comfortable observing; the wide-field viewfinder (b) facilitates object - location.
Diagonal Mirrors: When observing objects nearly overhead through refracting or mirror-lens telescopes, the diagonal mirror (or in some cases, diagonal prism) permits a comfortable observing position. The diagonal mirror diverts light out to a right-angle to the telescope's main tube. All Meade refractors and mirror-lens telescopes include a diagonal mirror or prism for this purpose. Examples: NG-60, NGC-60, and 8LX90.

Viewfinders: Most telescopes have rather narrow fields of view. As a result, finding and centering an object in the telescopic field can be difficult unless a viewfinder is used. The viewfinder is a small, low-power, wide-field telescope, usually equipped with internal crosshairs for easy object-sighting. With the viewfinder aligned parallel to the main telescope, objects first located in the viewfinder are then also in the main telescope's field.



The 45° Erecting Prism (shown here attached to the Meade ETX Astro Telescope) results in a correctly-oriented image for land observing.


Erecting Prisms: Astronomical telescopes image objects in an upside-down and reversed-left-for-right orientation. This orientation is of no consequence in astronomical observing, but for terrestrial observing a normal right-side-up image orientation is highly desirable. Meade 45° erecting prisms enable this correct image orientation and also result in a comfortable 45° observing angle.

Telescope Mountings


Once an object, whether terrestrial or astronomical, is located and centered in the telescope's field of view, the telescope's mechanical mounting permits the observer to track, or follow, the object as it moves across the landscape or sky. Types of telescope mountings include the following:

Altazimuth Mountings: The simplest type of telescope mount allows the telescope to be moved up-and-down (in vertical, or altitude) and left-to-right (in horizontal, or azimuth). The altitude-azimuth (altazimuth) mounting thus permits the observer to follow objects by simple motions of the telescope in vertical and horizontal. Slow-motion controls, can facilitate these motions. The altazimuth mount, owing to its simplicity and relatively lower cost, is widely used with telescopes in both land-viewing and astronomical applications. Example: Meade NG-60.


The Meade NG-60 includes an altazimuth mount, for horizontal and verticle tracking.

With the equatorial mount of the Meade LXD55, tracking astronomical objects is simplified.

Equatorial Mountings: Although celestial objects are essentially fixed in their positions in the sky (on the celestial sphere, the imaginary spherical surface on which all astronomical objects are located), they appear to move in an arc across the sky, as the earth rotates underneath the sky once every 24 hours. From an astronomical point of view, therefore, the task of the telescope mounting is to compensate for the Earth's rotation and allow the observer to track the Moon, planets, and stars. This task is made vastly easier by the equatorial mounting, the type of mounting incorporated into most larger or more advanced telescopes. By aligning one axis of the equatorial mount to the Earth's rotational axis (a simple process which involves pointing one telescope axis to the North Star), the observer can track astronomical objects by turning one control cable, instead of the two simultaneous motions required with the altazimuth mount. If a small motor is attached to the equatorial mount, this tracking can be performed automatically. These motor drives are available for most Meade equatorially mounted telescopes. Example: Meade LXD55.

Computer-Controlled Telescope Mountings: In 1992 Meade Instruments announced a revolutionary telescope mounting concept that soon became the largest-selling telescope mounting in the world among serious amateur astronomers. The Meade LX200 "Classic" computer control system permitted the telescope to be mounted in an altazimuth orientation, while motors, directed by an internal microprocessor, on both telescope axes followed astronomical objects with extreme precision.

In 2002 Meade Instruments announced the pinnacle of serious amateur telescopes, The Meade LX200GPS. This telescope features automatic set-up, acquiring a precise GPS position, automatically calibrating level and North, then accurately pointing to over 145,000 objects in its database. The Mount provides 185 drive speeds from .01x sidereal to 8°/second, plus 2000 tracking rates. The "Autostar" computer controller features guided tours to the most popular celestial objects as well as automatic GO TO and tracking of stars, planets, deep-sky objects, comets, asteroids, and earth satellites.





The 8" LX200GPS's computer automatically locates over 145,000 celestial objects.
Resolution, Resolving Power, and Diffraction Images

These terms form a basic part of the jargon associated with optics and telescopes, a jargon that even the most novice telescope user can understand. Resolution is a qualitative expression of how much detail can be observed through a given telescope.

Diffraction image of a star: at high power the image of a starpoint appears in even a perfect telescope as a disc ( the Airy disc), surronded by faint rings.
Telescopes are said to be of high-resolution if they are manufactured to optical standards that permit a level of visible detail consistent with the aperture and optical design of the instrument.

Stars (as opposed to the Moon, planets, or terrestrial objects, for example) are among the most difficult of objects for a telescope to image and bring to a sharp focus, because stars are point-sources of light: from the astronomer's point of view stars consist of light energy packaged in an infinitesimal area, or point. Surprisingly perhaps, the telescope forms images of stellar point-sources as finite-sized discs having real diameters. In other words although nature sends a point-size beam of light to the telescope, the observer looking through the telescope sees not a point-size image, but a tiny disc, called the Airy disc, with faint rings of light surrounding it. This telescopic image of a star, consisting of the Airy disc and its surrounding rings of light, is called the diffraction image.

Resolving power is the ability of a telescope to separate two closely-located starpoints.
The concept of the diffraction image is important because it allows the telescope user to rate the quality of the telescope's optical system. One such rating is determined by the telescope's ability to clearly separate, or resolve, two starpoints (i.e., two Airy discs) located very close to each other. The larger a telescope's aperture, the greater its ability to show two adjacent stars as separate, distinct images, rather than as one overlapping image. This ability is called resolving power. If a telescope's optical quality permits it to resolve starpoints to the theoretical limit of its aperture capabilities, then the telescope is said to be diffraction-limited.

Related Topics:


| home | about meade | product information | dealer locator | Meade 4M |
| customer support | investor relations | dealer support |
| employment opportunities | site map |

® The name Meade, the Meade logo, and ETX are trademarks registered with the United States Patent Office,
and in principal countries throughout the world.
Copyright © 2006 Meade Instruments Corporation, All Rights Reserved.
This material may not be reproduced in any form without permission.