Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mce.biophys.msu.ru/archive/doc15830/doc.pdf
Дата изменения: Tue Oct 30 16:28:28 2007
Дата индексирования: Mon Oct 1 20:52:31 2012
Кодировка:

Поисковые слова: m 63
. .., .., .. () , H+ . . . 2 (2) . , 2 . KINETIC MODEL OF PRIMARY PHOTOSYNTHETIC PROCESSES IN CHLOROPLASTS. MODELING OF ELECTRIC POTENTIAL ON THYLAKOID MEMBRANE Belyaeva N.E., Lebedeva G.V., Riznichenko G.Yu. (Moscow) Kinetic model is developed describing the system of generation and consumption of transmembrane electrochemic proton potential H+ in primary photosynthetic processes. The model of catalytic cycle of photosystem II is one of the whole model blocks with the detailed description of the reactions rates. The dependence of the electron transfer rates on the value of transmembrane electric potential is taken into account. Then the photosystem II model is applied
264


.. . -- -10, 2002, .264-265

to the description of experimental data on the registration of the fast phase of fluorescence induction curve when values of transmembrane electric potential are varied. The model is shown to give realistic description of the fast phase of fluorescence induction curve at different values of transmembrane electric potential. . , . ­ . - , (), . ~ , + , H

- (pmf ­ proton motive force) :

~ H + = pmf = i

-o

+

2.3 RT F

pH

o -i

pHo-i, pHo (outside) pHi (inside). i-o . [1,2] pmf i-o pHo-i . , [1,3]. [4,5,6,10,11] , 2 1 (2, 1) bf ,
265


2. ,

(H , K , Cl .), , - .1. , . [5] 2, [6,10,11] ­ . i-o. , , . i-o. , , , . ., i-o. i-o(t) [3,8,12]. .1. [12] i-o(t), Peperomia metallica. 20В50 , 10. i-o G [13]: G=(d
dipole

+

+

­

/d

i-o)

ei-o

(1)

d i-o ­ , ; ddipole ­ . ddipole / d i-o (1) i=ddipole / d i-o [7]:
266


.. . -- -10, 2002, .264-267

~ K

eq

= exp(

nF RT

(Em - i )) ,

(2)

nF

Em ­ , RT

. (2) [10,11]. i-o(t) , . i-o(t) , :

cm d = v(ql ) - v(qs ) F dt
m ­ , F ­ + + ; v(ql), v(qs) ­ H , K , ­ Cl . , , . i-o(t) [2]. , i-o, 2 [9,12,13]. 2. 2 (.2.). (i- - ) - 2, QB- ( .2.). 2
267


2. ,

(Chl) (), (Phe ), ­ (QA ) . i=1-7: (3) [qi ]= [ xi ]+[gi ]+[yi ]+[zi ] , i=2, 6 2 (.2.) .

­

Fl =



i

(

excited , states )i

i- i- 2. 2 QA-: QA-QB, QA-QB, QA-QB-, QA-QB2z-, ).

( 2 ­ x, g, y, i=4

, (3), :



7

[qi ] .

()- 7- ([q7 ]) QA-. , 7- . ­ ( Phe ) ( QA-) i- - i=2,3,4,6: [qi ] [q
i+1

].

(4)

2 (. (2)) i. (2) . , , , .
268


.. . -- -10, 2002, .264-269

. , O-J-I-P. 2 , O-J-I-P 2, 2. , P- J-I-. , ­1 (kL>2000 ) , i-o=0 i-o=+200 . , , J-I- , 3 () i-o=0 .3... [1], .3... 100 KCl 0.2В2 , (10В200 ) + (.3.. 4). , K - . , (.3.. 2).. 600 /2. , J- 2 ­1 kL=900 , 600 /2.. (.3..) . , , [1], (.3.. 2), 4- ,
269


2. ,

(P680 QA ) (. .3.. 3, , ). 2 . i-o . 2 P- . >1000 2 . :

+

­

F = 0 F / F = f ( , kL) .4.. kL=4000 , kL=400 , kL=40 , kL=300 , 1, 2, 3, 4 . , , ­ ( 2, 3). , : -1 -1 F ( kL, ) = F ( kL ) = 0 + ( kL ) (200 >kL<600 ),
-1 -1 -1 -1

F / F =

F

0

-F

= 0

. [13]. [13] . q=(FM ­ F )/(F M ­ F0) 2 (q=0 ). , ( ) . -70 +165 , . ­150 +150
270

­ , (kL) ­ -


.. . -- -10, 2002, .264-271




i =1







(

, , [13]. 15% 100 -1 kL=300 (.4.. 3), 9% (±2%) 100 , [13] , . . F0 . , -1 -1 (600 >kL<4000 ) F / F = f ( , kL) ( 3, 2, 1) ­ . [13]. , ( (
-1

i =4



7

qi ) /



7

qi 0.5 ( 2 3 .4..) -

i=4



7

qi ) /

30% (kL<200 ) 70% (kL>600 ) F / F = f (, kL) , 2, , ( 1 4 .4..). , . [9]. i-o. [9] , Anthoceros, ( .4.. 4), 2 (.4.. 1,2,3). 2 (.4.. 2,3)., [9] (.4.., 1) FM 271

-1

i =1



7

qi ) -


2. ,

, . . 5 15%. 15% 100 (.4.. 3). -1 (kL=400 ) ( 2 ) (.4.. 1), ( 10 ) (.3.. 3), , .. [9], (.4.. 2), (.4.., 3). F / F = f ( , kL) (.4.. 1 4) (.4.. 1) (.4.. 1). [9] , 2. , 2 , . , . 2 , , , 2. , (4), , , . , , , 2 .
272


.. . -- -10, 2002, .264-273

.
.. , .. , .. .. . ( 00-04-48919.)

NADPH

h
Chl

2
QA P PQ
680

2H+

2H+ PQ

bf
b
h l

NADP

+

1
FeS P
700 I

h

Fd

Chl

PQH2 2H+

b

Chl
-

H2O 2H+ 1/2O2

FeSR

f

Pc
OOC
-

Q-
3H+

R-COO
-

+

H+ K+


Cl
-

+

OOC R-C OO -

_


-

_
ADP + Pi



ATP

.1. , . [11]. . .

273


2. ,
z
14
1

z

2

z
16

Chl 15 Phe QA Q B2 + 2H s 21 PQH

Chl* Phe QA Q B 2-

Chl + Phe QA Q B 2-

3

z
17

Chl + Phe QA Q B 2-

4

Hl+

z

5

z
19

6

z
20

7

18

Chl Phe QA Q B 2-

Chl* Phe QA Q B 2-

Chl Phe QA QB

2-

+

2

+ 2Hs 22 PQH 2

+ 2H s 23 PQH 2

+ 2H s 24 PQH

2

+ 2Hs 25 PQH 2

+ 2H s 26 PQH 2

+ 2H s 27 PQH2 Chl + Phe QA PQ 40

g

1

g
28

2

g
29

3

Chl Phe QA

Chl* Phe QA

Chl Phe QA

+

g
30

4

Chl Phe QA

+

Hl+

g

5

g
32

6

g

7

31

Chl Phe QA

Chl* Phe QA PQ 39

33

41

PQ 34 35

PQ 36

PQ 37

PQ 38
Hl+

PQ

x

1

x
1

2

x
2

Chl Phe QA QB

Chl* Phe QA QB

Chl + Phe QA QB

3

x
3

Chl + Phe QA QB

4

x

5

x
5

6

x
6

4

Chl Phe QA QB

Chl* Phe QA QB

Chl + Phe QA QB

7

7

y

1

y
8

2

y
9

Chl Phe QA QB -

Chl* Phe QA QB -

Chl + Phe QA QB -

3

y
10

Chl + Phe QA QB -

4

Hl+

y

5

y

6

y
13

7

11

Chl 12 Phe QA QB -

Chl* Phe QA QB -

Chl Phe QA QB

+

-

.2. 2. 2, . , . Chl ­ 2, 680; Phe ­ ; QA QB ­ . PQ ­ ; PQH2 ­ ; Hl+ ­ , , Hs+ ­ , . . (xi , yi , zi , gi, i=1, ...7) .

274


.. . -- -10, 2002, .264-275

()

.3. () ( ) 4- , + ­ (P680 QA ) (, ) (kL=3000 ­1). 1 - , , 3 - +100, 2 - -100. () , 0.1 0.1 K+- [1] : (1) ; (2) (140M); (3) 2), 2M ; (4) 2), 2M 1M .

275


2. ,
1 2 3 4
0,25 0,2 0,15

( )
( )
50 100 150

2 3 - 150 - 100 150 -

- 150 -

0,1 0,25 0,05 0,2 0 0,15 -0,05 0 0,1 -0,1 0,05 -0,15 0 -0,2 -0,05 0 100 - 50 ,25 -0 -0 1 ,
-0,15 -0,2

50

100 150

,

,

-0,25

.4. . () 1 - 4 kL=4000 , 400 , 40 , 300 -1 . () (kL=400 -1) : 1) 2, 10M; 2) , 3) , k03=250 ­1. () Anthoceros , [9]. 1 - ; 2 - 10M , 3) ­ 1 M 0,1 M . ; ( ) . .

. 1. Bulychev A.A., Vredenberg W.J. Bioelectrochemistry 54 (2001) 157-168. Modulation of photosystem II chlorophyll fluorescence by electrogenic events generated by photosystem I. 2. Dau H., Windecker R. and Hansen U.P., Biochim. Biophys. Acta. 1991. V.1057. P.337-345. Effect of light-induced changes in thylakoid voltage on chlorophyll fluorescence of Aegopodium podograria leaves. 3. Gibasiewicz K., Dobek A., Breton J., and Leibl W.. Biophys. J.
276




.. . -- -10, 2002, .264-277

4. 5. 6.

7. 8.

9. 10.

11.

12. 13.

2001, 80 No. 4 April 1617-1630. Modulation of Primary Radical Pair Kinetics and Energetics in Photosystem II by the Redox State of the Quinone Electron Acceptor QA.. .., .., .., .., .. . 2000. .45, . 3. .452-460 . .., .., .., .., .. . . 2000. .74. C.1897-1906. II . .., .., .., .., .. . «. . .» .7, ., 2000, 606-614. . Reynolds I.A., Johnson E.A. and Tanford C. Proc. Natl. Acad. Sci. USA. 1985. V. 82. P. 6869-6873, Incorporation of membrane potential into theoretical analysis of electrogenic ion pumps. O.Van Kooten, J.F.H. Snel, W.J. Vredenberg. in Proceedings VII International Photosynthesis Congress 1986, John Biggins ed. Modelling of photosynthetic energy conversion. I. Description and basic principles of the model. II. III. Electrochemical events at the membrane. Bulychev A.A., Niyazova M.M. Biofizika (1989)34 63-67. Modeling the potential-dependent changes of chlorophyll fluorescence in photosystem II. .., .., .., .., .. . . . .: -. 2001. .8. .587-595. . .., .., .., .., .. , 2002, 47, .6, .1044-1058. . . Bulychev A.A., Vredenberg W.J. Physiologia plantarum (1999) 105 577-584. Light-triggered electrical events in the thylakoid membrane of plant chloroplast. Dau H., Sauer K. BBA (1991) 1098 49-60. Electric field effect on
277


2. ,

chlorophyll fluorescence and its relation to photosystem II charge separation reactions studied by a salt-jump technique.

278