Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mccme.ru/mmks/dec08/Ann-Safin.pdf
Дата изменения: Sat Dec 6 00:09:17 2008
Дата индексирования: Tue Oct 2 11:22:58 2012
Кодировка: koi8-r
ПРОГРАММА ДЛЯ ПОСТРОЕНИЯ ПРАВИЛЬНЫХ МНОГОУГОЛЬНИКОВ ЦИРКУЛЕМ И ЛИНЕЙКОЙ А. Р. Сафин1
Аннотация
С давних времён людей интересовал вопрос, как строить различные фигуры при помощи циркуля и линейки. Осо бенно интересны в этом плане были правильные многоугольники. Я написал компьютерную программу в пакете Mathematica , с помощью которой можно построить все построимые правильные многоугольники. По теореме Гаусса-Ванцеля (всюду далее m | натуральное число, p1 , p2 , p3 , . . . , pl | различные простые числа Ферма, то есть числа вида 2m + 1 и q | целое неотрицательное число) число вершин в них имеет вид 2q p1 p2 p3 : : : pl . Для построения правильного 2q p1 p2 p3 : : : pl -угольника достаточно уметь строить правильные p1 , p2 , p3 , . . . , pl -угольники. Очевидно, что для построения правильного p-угольника достаточно построить отрезок длиной cos 2p . А для этого нужно, что бы cos 2p был квадратичной иррациональностью, то есть выражался через натуральные числа при помощи арифметических операций и квадратных корней из неотрицательных чисел. Эти факты доказаны в приложении ??. Моя программа выражает cos 2p в радикалах. Иоганн Густав Гермес более 10 лет разрабатывал спосо б построения правильного 65 537-угольника и описал его в рукописи размером более 200 страниц, которая хранится в библиотеке Гёттингенского университета ([?]). Моя программа находит соответствующее построение около минуты. Идея о программе и основные принципы её работы взяты из [?]. При написании программы я столкнулся с про блемами (они приводятся в параграфе ??), которые успешно решил вместе с научными руководителями. Программу и настоящий текст я написал сам. Благодарим М. А. Малахальцева за полезные о бсуждения.

11А класс. Лицей им. Н. И. Ло бачевского при Казанском государственном университете. Научные руководители: Скопенков А. Б., МГУ; к. ф.-м. н., доцент КГТУ Бронштейн М. Д.; к. ф.-м. н., доцент КГУ Лернер Э. Ю.

1 safinaskar@mail.ru.

1