Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mccme.ru/lifr/zykin/fr/zeta/talks/essouabri.html
Дата изменения: Thu Jul 1 00:53:17 2010
Дата индексирования: Tue Feb 5 03:39:17 2013
Кодировка:
Conférence "Zeta Functions"
CNRS Poncelet

Conférence "Zeta Functions"

21 - 25 juin 2010

Moscou, Russie

RAS Poncelet

Organisateurs: Michel Balazard (CNRS, Laboratoire Poncelet), Michael Tsfasman (CNRS, Laboratoire Poncelet, Institut des Problèmes de Transmission de l'Information), Alexey Zykin (Laboratoire Poncelet, Haute Ecole d'Economie)

English Russian

Analytic continuation of zeta functions and self-similarity

Driss Essouabri (Saint-Étienne)

Mardi 22 juin, 11:30 - 12:30

Résumé

Let $A$ be an arithmetical subset of a euclidean space $(E,q)$ (eg. $A$ is a subset of a Lattice defined by arithmetical conditions). Several arithmetic and geometric information of $A$ can be deduced from the analytic properties of its zeta function $\zeta(A;s)=\sum_{m\in A}' q(m)^{-s}$; more precisely from its meromorphic continuation, the distribution of its poles, etc.. If $A$ has some algebraic or analytic regularity, one can then use the analytic or algebraic machinery to extend analytically $\zeta(A;s)$. The purpose of this talk is to introduce a method to analytically continue the zeta functions $\zeta(A;s)$ associated to arithmetic sets $A$ possibly irregulars, but with additional fractal structures. The idea is to exploit self-similarity instead of algebraic or analytic regularity.

Laboratoire Poncelet