Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.mccme.ru/lifr/zykin/fr/zeta/talks/essouabri.html
Дата изменения: Thu Jul 1 00:53:17 2010 Дата индексирования: Tue Feb 5 03:39:17 2013 Кодировка: |
Conférence "Zeta Functions"21 - 25 juin 2010Moscou, Russie |
Organisateurs: Michel Balazard (CNRS, Laboratoire Poncelet), Michael Tsfasman (CNRS, Laboratoire Poncelet, Institut des Problèmes de Transmission de l'Information), Alexey Zykin (Laboratoire Poncelet, Haute Ecole d'Economie)
Mardi 22 juin, 11:30 - 12:30
Let $A$ be an arithmetical subset of a euclidean space $(E,q)$ (eg. $A$ is a subset of a Lattice defined by arithmetical conditions). Several arithmetic and geometric information of $A$ can be deduced from the analytic properties of its zeta function $\zeta(A;s)=\sum_{m\in A}' q(m)^{-s}$; more precisely from its meromorphic continuation, the distribution of its poles, etc.. If $A$ has some algebraic or analytic regularity, one can then use the analytic or algebraic machinery to extend analytically $\zeta(A;s)$. The purpose of this talk is to introduce a method to analytically continue the zeta functions $\zeta(A;s)$ associated to arithmetic sets $A$ possibly irregulars, but with additional fractal structures. The idea is to exploit self-similarity instead of algebraic or analytic regularity.