Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.mccme.ru/lifr/pers/karpenkov.htm
Дата изменения: Wed Oct 4 13:56:50 2006
Дата индексирования: Tue Oct 2 08:57:11 2012
Кодировка:
Поисковые слова: m 81
|
Oleg KARPENKOV
Graduate student, from November 2002
Education:
- 1994-1997
- Moscow Mathematical Highschool number 57
- 1997-2002
- Moscow State University, undergraduate student
- 1997--2002
- Independent University of Moscow undergraduate student
- 2002--now
- Moscow State University graduate student
- 2002--now
- Independent University of Moscow graduate student
Advisors:
Vladimir I. Arnold, Alexei B. Sossinski,
Vladimir M. Zakalyukin
Research interests:
Number Theory (multidimensional continued fractions, extensions
over the field of rational numbers)
Knot theory (functionals on the space of knots, rational knots)
Singularity theory (boundary singularities, cusp singularities)
Seminaras, Conferences and Trips
Abroad
- S\'eminaire scientifique OTAN, 41-e session —
été 2002
"Normal Forms, Bifurcations and Finiteness Problems in
Differential Equations" Montréal, Canada, July 2002
- Conference "Knots in Poland", Warsaw and Bedlewo, Poland , July
2003.
- May 1-15, 2004, Uneversité Paris XI Dauphine (France)
- May 15 - June 29, 2004, Institut de Mathématiques de Luminy
(France) Program "Jumelage CNRS-UIM".
Publications:
- Combinatorics of multiboundary $B_n^l$ singularities and
Bernoulli---Euler numbers, Funct. An. Appl. 36(2002), no 1,
78-81.
- Energy of a knot: variational principles, Russian Jour. of
Math. Phys. vol. 9(2002), no 3, pp. 275-287.
- Energy of a knot: some new aspects, Fundamental Mathematics
Today, IUM, MCCME 2003
- On tori triangulations associated with two-dimensional
continued fractions of cubic irrationalitie,
Func. An. and Appl.,
vol.38(2004) no 2, pp. 28-37.
- On two-dimensional continued fractions for integer hyperbolic
matrices with small norm, Uspehi Mat. Nauk, vol. 59(2004), no. 5,
pp. 149--150.
- Classification of three-dimensional multistory completely
empty convex marked pyramids, To appear in Uspehi Mat. Nauk
(2005).