Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.mccme.ru/lifr/conf2007/-name=lachaud.htm
Дата изменения: Wed Jul 4 22:00:19 2007 Дата индексирования: Tue Oct 2 13:38:58 2012 Кодировка: Поисковые слова: barnard 68 |
Global Fields
Laboratoire J.-V. Poncelet |
|
Gilles Lachaud Institut de Mathematiques de Luminy, France An instance of Serre's conjecture on plane quarticsWe describe a correspondence between from family of plane quartics over a field k to a family of abelian threefolds over k. This correspondence is the Jacobian up to isogeny. This leads to a solution of Serre's conjecture on non hyperelliptic genus 3 curves. When k is the field of complex numbers, Serre's conjecture reduces to an identity of Klein on Thetanullwerte of genus 3. We give a precise form of Klein's identity in the case considered here Zeta functions and additive invariantsWe define, following Kapranov, the zeta function over a curve defined over a field k in the framework of additive invariants, a.k.a. motivic measures. This function enjoys a functional equation. We proceed to a deconstruction of the zeta function in terms of Eisenstein series of vector bundles. Go to the Laboratoire Poncelet home page. |
|
Site design by Paul Zinn-Justin |