Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mccme.ru/lifr/conf2007/-name=lachaud.htm
Дата изменения: Wed Jul 4 22:00:19 2007
Дата индексирования: Tue Oct 2 13:38:58 2012
Кодировка:

Поисковые слова: barnard 68
Conference Global Fields

Global Fields

July 2 - 6, 2007, Moscow, Russia

Laboratoire J.-V. Poncelet

General

Announcement

Participants

Practical details

Program

Gilles Lachaud

Institut de Mathematiques de Luminy, France

An instance of Serre's conjecture on plane quartics

We describe a correspondence between from family of plane quartics over a field k to a family of abelian threefolds over k. This correspondence is the Jacobian up to isogeny. This leads to a solution of Serre's conjecture on non hyperelliptic genus 3 curves. When k is the field of complex numbers, Serre's conjecture reduces to an identity of Klein on Thetanullwerte of genus 3. We give a precise form of Klein's identity in the case considered here

Zeta functions and additive invariants

We define, following Kapranov, the zeta function over a curve defined over a field k in the framework of additive invariants, a.k.a. motivic measures. This function enjoys a functional equation. We proceed to a deconstruction of the zeta function in terms of Eisenstein series of vector bundles.


Go to the Laboratoire Poncelet home page.
Site design by Paul Zinn-Justin