Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mccme.ru/ium/s03/set.html
Дата изменения: Fri Dec 9 17:01:06 2005
Дата индексирования: Tue Oct 2 01:28:57 2012
Кодировка: koi8-r

Поисковые слова: ngc 4676
Basic set theory (Spring 2003)

На главную страницу НМУ

В.Б.Шехтман, Д.И.Савельев

Основы теории множеств

Программа курса

  1. Axioms of set theory in different versions: ZF, NBG, TT.
  2. The simplest set-theoretic notions (relation, function, product etc.)
  3. Natural numbers. Finite and infinite sets. Countable sets.
  4. Well-orderings. Ordinals and their properties. Transfinite induction.
  5. Cardinalities. Cantor- Bernstein theorem. Cantor theorem.
  6. Axiom of Choice and Zermelo theorem. Zorn's lemma. Filters and ultrafilters.
  7. Cardinals. Cardinal arithmetic.
  8. Cofinality. Regular and singular cardinals.
  9. Generalized continuum hypothesis. Sierpinsky theorem.
  10. Inaccessible cardinals. Measurable cardinals.
  11. Games and strategies. The axiom of Determinateness.

Bibliography

  1. C. Kuratowski, A. Mostowski. Set theory. Amsterdam, 1968.
  2. A. Levy. Basic set theory. Springer, 1979.
  3. M. Zuckerman. Sets and transfinite numbers. Macmillan, 1974.
  4. D. van Dalen, H.C. Doets, H. de Swart. Sets: naive, axiomatic and applied. Pergamon Press, 1978.

Rambler's Top100