Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.mccme.ru/ium/f15/f15-penskoi-sem.html
Дата изменения: Mon Jan 4 14:47:37 2016 Дата индексирования: Sun Apr 10 07:02:37 2016 Кодировка: koi8-r Поисковые слова: vela |
В осеннем семестре 2015-2016 года продолжает работу совместный учебно-исследовательский семинар по спектральной геометрии Независимого московского университета и российско-французской Laboratoire J.-V. Poncelet (UMI 2615) под руководством А.В.Пенского.
19 декабря 2015 (суббота), 11:00, ауд.304
Докладчик: Равиль Габдурахманов (НМУ, НИУ ВШЭ)
Тема: Обзор некоторых результатов в исследовании геометрии и спектра задачи Стеклова
Аннотация:
Я напомню про задачу Стеклова. Далее расскажу немного о различиях в её
геометрии и геометриях задач Дирихле и Неймана. Потом мы посмотрим на
результаты об асимптотиках и инвариантах спектра Стеклова. И увидим
как гладкость границы многообразия влияет на асимптотику, посмотрев на
результаты для спектров некоторых многоугольников. Затем коснёмся
геометрических неравенств и оценок для собственных значений. Продолжим
вопросами изоспектральности. И завершим нодальной геометрией и оценками
на кратность собственных значений.
Доклад обзорный, основан на статье A.Girouard and I. Polterovich, "Spectral geometry of the Steklov problem"
12 декабря 2015 (суббота), 11:00, ауд.304
Докладчик: Родион Деев (НМУ, НИУ ВШЭ)
Тема: Неравенства на собственные числа на римановых многообразиях
с нижней оценкой на кривизну Риччи (продолжение)
Аннотация:
Следуя недавней статье Асмы Хассаннежад, Иосифа Полтеровича и Герасима Кокарева, я
попытаюсь рассказать про то, как ограничение снизу на скалярную кривизну риманова
многообразия даёт хорошо известные ограничения на собственные числа лапласиана -
неравенства Бузера, Чена и Громова.
5 декабря 2015 (суббота), 11:00, ауд.304
Докладчик: Родион Деев (НМУ, НИУ ВШЭ)
Тема: Неравенства на собственные числа на римановых многообразиях
с нижней оценкой на кривизну Риччи
Аннотация:
Следуя недавней статье Асмы Хассаннежад, Иосифа Полтеровича и Герасима Кокарева, я
попытаюсь рассказать про то, как ограничение снизу на скалярную кривизну риманова
многообразия даёт хорошо известные ограничения на собственные числа лапласиана -
неравенства Бузера, Чена и Громова.
28 ноября 2015 (суббота), 11:00, ауд.304
Докладчик: Владимир Медведев (НМУ, ИПУ РАН)
Тема: О работе Брайанта о суперминимальных погружениях поверхностей в сферу (продолжение).
Аннотация:
Мы продолжим строить по данному минимальному погружению двумерной сферы в четырёхмерную единственную голоморфную кривую в пространстве твисторов четырёхмерной сферы, CP^3. Я надеюсь завершить доказательство теоремы Брайанта. Важными для нас будут понятие суперминимального погружения и его спина. Для доказательства теоремы Брайанта нам также понадобятся некоторые факты из алгебраической и кэлеровой геометрий (все они будут сообщены).
21 ноября 2015 (суббота), 11:00, ауд.304
Докладчик: Владимир Медведев (НМУ, ИПУ РАН)
Тема: О работе Брайанта о суперминимальных погружениях поверхностей в сферу (продолжение).
Аннотация:
Мы продолжим разбирать теорему Брайанта о поднятии минимального погружения римановой поверхности в четырёхмерную сферу до голоморфной кривой в пространстве твисторов этой сферы, CP^3. В прошлый раз мы успели получить структурные уравнения, на этом вычислительная часть теоремы Брайанта практически закончена. Кроме полученных уравнений для понимания доказательства теоремы Брайанта нам понадобятся некоторые факты из кэлеровой и алгебраической геометрий (всё необходимое будет сообщено).
14 ноября 2015 (суббота), 11:00, ауд.304
Докладчик: Владимир Медведев (НМУ, ИПУ РАН)
Тема: О работе Брайанта о суперминимальных погружениях поверхностей в сферу
Аннотация:
Вслед за результатами Калаби и Барбосы о связи минимальных погружений двумерных сфер в n-мерные с (псевдо)голоморфными кривыми мы проследуем к результатам Брайанта, описывающим связь минимальных погружений римановых поверхностей в четырёхмерную сферу с голоморфными кривыми в CP^3, которые можно рассматривать как обобщение результатов Барбосы и Калаби для этого частного случая минимальных погружений. Ключевым понятием в докладе будет понятие суперминимального погружения.
7 ноября 2015 (суббота), 11:00, ауд.304
Докладчик: Никита Клемятин (МГУ)
Тема: О работе Барбосы о минимальных погружениях двумерной сферы в многомерные сферы.
Аннотация:
Я расскажу статью Барбосы, в которой доказывается, что площадь минимальной иммерсии двумерной сферы в n-мерную делится на 4*pi. Это усиливает недавно обсуждавшийся результат Калаби.
31 октября 2015 (суббота), 11:00, ауд.304
Докладчик: Арсений Райко (МГУ)
Тема: О последней работе Симона Аритурка
Аннотация:
Я расскажу о последней работе Синона Аритурка. Речь пойдет о телах вращения. Будет доказано, что кольцо максимизирует все собственные значения оператора Лапласа-Бельтрами для задачи Дирихле среди поверхностей вращения с двумя компонентами границы.
Техника, привлеченная для доказательства, позволяет доказать похожий еще один факт: половина геликоида максимизирует все собственные значения задачи Дирихле в классе поверхностей, инвариантных относительно винтового действия окружности в R^2 x S^1 с такой же границей.
Будут привлечены средства из функционального анализа.
24 октября 2015 (суббота), 11:00, ауд.304
Докладчик: Владимир Медведев (НМУ, ИПУ РАН)
Тема: О работе Калаби о гармонических отображениях двумерной сферы в n-мерную (продолжение).
Аннотация:
Мы продолжим изучение гармонических отображений двумерной сферы в n-мерную и докажем
теорему Калаби о гармоническом образе двумерной сферы.
17 октября 2015 (суббота), 11:00, ауд.304
Докладчик: Н.С.Надирашвили (CNRS)
Тема: Изопериметрическое неравенство для третьего собственного числа
оператора Лапласа-Бельтрами на сфере
10 октября 2015 (суббота), 11:00, ауд.304
Докладчик: Владимир Медведев (НМУ, ИПУ РАН)
Тема: О работе Калаби о гармонических отображениях двумерной сферы в n-мерную (продолжение).
Аннотация:
Мы продолжим разговор про теорему Калаби о гармонических отображениях
между сферами: я расскажу более подробно об устройстве изотропного
пространства и попытаюсь дать набросок доказательства теоремы Калаби.
3 октября 2015 (суббота), 11:00, ауд.304
Докладчик: Владимир Медведев (НМУ, ИПУ РАН)
Тема: О работе Калаби о гармонических отображениях двумерной сферы в n-мерную.
Аннотация:
Мы продолжим изучение гармонических отображений и обсудим фундаментальную
теорему Калаби, которая классифицирует гармонические отображения двумерной
сферы в n-мерную. Все необходимые сведения для понимания этой теоремы будут
даны.
26 сентября 2015 (суббота), 11:00, ауд.304
Докладчик: Владимир Медведев (НМУ, ИПУ РАН)
Тема: Экстремальные метрики и гармонические отображения.
Аннотация:
Мы продолжим изучение экстремальных метрик. Рассмотрим задачу о поиске экстремальных метрик на компактных римановых поверхностях без края. Оказывается, что в этом случае нам придётся расширить класс искомых метрик (супремум первого собственного числа достигается для метрик, имеющих конченое множество конических особенностей (Петридес, 2013)). Эти особенности проистекают из особенностей минимальных погружений, которые являются частным случаем гармонических отображений. В связи с этим нам предстоит разобраться с теорией гармонических отображений.
Мы поговорим о результатах Петриеса 2013 года об экстремальных метриках на римановых поверхностях без края и об основных свойствах гармонических отображений.
19 сентября 2015 (суббота), 11:00, ауд.304
Докладчик: Владимир Медведев (НМУ, ИПУ РАН)
Тема: Оператор Лапласа-Бельтрами, минимальные погружения и экстремальные метрики.
Аннотация:
Мы продолжим изучение экстремальных метрик и докажем важнейшую теорему
(теорему Надирашвили-Эль Суфи-Илиаса), дающую ответ, когда метрика на
данном многообразии является экстремальной. Все необходимые определения и
важные для доклада факты будут сообщены.
12 сентября 2015 (суббота), 11:00, ауд.304
Докладчик: Владимир Медведев (НМУ, ИПУ РАН)
Тема: Оператор Лапласа-Бельтрами и минимальные погружения.