Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mccme.ru/ium/f04/equivar.html
Дата изменения: Fri Dec 9 17:00:36 2005
Дата индексирования: Tue Oct 2 03:30:56 2012
Кодировка: koi8-r

Поисковые слова: comet tail
Equivariant cohomology... (Fall 2004)

На главную страницу НМУ

А.В.Пенской (A.Penskoi)

Эквивариантные когомологии и теорема о локализации (Equivariant cohomology and the localization theorem)

Exam

[Postscript (35K)|Zipped postscript (14K)]

Одним из замечательных результатов комплексного анализа является возможность вычислить интеграл по контуру с помощью вычетов в особых точках. Есть ли аналог этого результата при интегрировании дифференциальных форм по многоообразию? К сожалению, в общем случае нет. Тем не менее, Ботт заметил, что в некоторых случаях этот интеграл все-таки можно свести к интегралу по подмногообразию (локализовать). В данном курсе одним из главных результатов будет теорема о локализации для эквивариантных дифференциальных форм и ее приложения (например, теорема Дейстермаата-Хекмана). По ходу дела мы рассмотрим с разных точек зрения эквивариантные когомологии и увидим, как в этом контексте естественно возникают многие известные объекты и конструкции (например, гомоморфизм Чженя-Вейля). Если позволит время, то мы рассмотрим и совсем недавние результаты (например, как определить некоммутативный гомоморфизм Чженя-Вейля и естественным образом получить с его помощью теорему Дюфло о центре универсальной обертывающей алгебры).

Предполагается, что слушатели знакомы с основами дифференциальной геометрии, теорией групп и алгебр Ли, основами алгебраической топологии.


Rambler's Top100