Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.mccme.ru/ium/f04/equivar.html
Дата изменения: Fri Dec 9 17:00:36 2005 Дата индексирования: Tue Oct 2 03:30:56 2012 Кодировка: koi8-r Поисковые слова: comet tail |
[Postscript (35K)|Zipped postscript (14K)]
Одним из замечательных результатов комплексного анализа является возможность вычислить интеграл по контуру с помощью вычетов в особых точках. Есть ли аналог этого результата при интегрировании дифференциальных форм по многоообразию? К сожалению, в общем случае нет. Тем не менее, Ботт заметил, что в некоторых случаях этот интеграл все-таки можно свести к интегралу по подмногообразию (локализовать). В данном курсе одним из главных результатов будет теорема о локализации для эквивариантных дифференциальных форм и ее приложения (например, теорема Дейстермаата-Хекмана). По ходу дела мы рассмотрим с разных точек зрения эквивариантные когомологии и увидим, как в этом контексте естественно возникают многие известные объекты и конструкции (например, гомоморфизм Чженя-Вейля). Если позволит время, то мы рассмотрим и совсем недавние результаты (например, как определить некоммутативный гомоморфизм Чженя-Вейля и естественным образом получить с его помощью теорему Дюфло о центре универсальной обертывающей алгебры).
Предполагается, что слушатели знакомы с основами дифференциальной геометрии, теорией групп и алгебр Ли, основами алгебраической топологии.