Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mccme.ru/conf_feb_05/nechaev.html
Дата изменения: Tue Feb 15 16:48:09 2005
Дата индексирования: Tue Oct 2 00:29:21 2012
Кодировка:

Поисковые слова: ceres
Conference "Combinatorial Methods in Physics and Knot Theory" (February 2005)

International conference
Combinatorial Methods in Physics and Knot Theory

Serguei NECHAEV (LPTMS, Paris-11 Orsay): From anisotropic ballistic growth to the search of the longest common subsequence: exact asymptotic results

We show that two different problems, the statistics of scaled height in a (1+1)--dimensional anisotropic Ballistic Deposition (BD), and the statistics of the Longest Common Subsequence (LCS) of a pair of random sequences drawn from c letters for c>>1, share the same Tracy-Widom distribution of the largest eigenvalue of random GUE-matrices. Our result is derived via the mapping of BD and LCS to the exactly solvable (2+1)--anisotropic directed percolation (ADP) and subsequent application of exact results known for the Ulam problem. (Refs: S.N.Majumdar, S.Nechaev, PRE 69, 011103 (2004); S.N.Majumdar, S.Nechaev, q-bio.GN/0410012)