Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.mccme.ru/conf_feb_05/natanzon.html
Дата изменения: Tue Feb 15 19:21:23 2005 Дата индексирования: Tue Oct 2 00:38:55 2012 Кодировка: Поисковые слова: п п п п п п п п п п п п п п п п п п п п п п п п п п |
It is well-known that classical two-dimensional topological field theories are in one-to-one correspondence with commutative Frobenius algebras. An important extension of classical two-dimensional topological field theories is provided by open-closed two-dimensional topological field theories. In this paper we extend open-closed two-dimensional topological field theories to nonorientable surfaces. We call them Klein topological field theories (KTFT). We prove that KTFTs bijectively correspond to algebras with certain additional structures, called structure algebras. Semisimple structure algebras are classified. Starting from an arbitrary finite group, we construct a structure algebra and prove that it is semisimple. We define an analog of Hurwitz numbers for real algebraic curves and prove that they are correlators of a KTFT. The structure algebra of this KTFT is the structure algebra of the symmetric group.