Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.mccme.ru/ZetaConference/?name=zykin
Дата изменения: Unknown Дата индексирования: Sun Dec 23 01:51:19 2007 Кодировка: Поисковые слова: heart nebula |
Zeta Functions
Laboratoire J.-V. Poncelet |
|
Alexey Zykin Independent University of Moscow, Russia The Generalized Brauer-Siegel TheoremThe classical Brauer-Siegel theorem states that if $k$ runs through the sequence of normal extensions of $\mathbb{Q}$ such that $n_k/\log|D_k|\to 0,$ then $\log h_k R_k/\log \sqrt{|D_k|}\to 1.$ In this talk we will give a brief survey of what is known about the generalizations of this theorem. First, we will discuss the versions of the Brauer-Siegel theorem where the conditions on the family of number fields are considerably weakened. Second, we will mention some explicit versions of the theorem due to P. Lebacque. Third, we will dwell on the higher dimensional analogues of the Brauer-Siegel theorem both in the number field and in the function field cases giving an overview of known results and open problems. Go to the Laboratoire Poncelet home page. |
|
Site design by Paul Zinn-Justin (2005) |