Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.mccme.ru/ZetaConference/?name=zudilin
Дата изменения: Unknown Дата индексирования: Sun Dec 23 01:53:40 2007 Кодировка: Поисковые слова: m 13 |
Zeta Functions
Laboratoire J.-V. Poncelet |
|
Wadim Zudilin MGU, Moscow, Russia Magic of Apery's numbersThe integers $ a_n=\sum_{k=0}^n{\binom nk}^2{\binom{n+k}k}^2, n=0,1,2,... $ appear as denominators of rational approximations to $\zeta(3)=\sum_{k=1}^\infty k^{-3}$ in Apery's proof of the irrationality of $\zeta(3)$. The sequence satisfies a polynomial recursion, namely, $ (n+1)^3a_{n+1}-(2n+1)(17n^2+17n+5)a_n+n^3a_{n-1}=0$, where $n=0,1,2,...$, and admits several curious congruence properties. We survey some recent results and open problems related to Apery's numbers $a_n$, $n=0,1,2,...$, and their generalizations. Go to the Laboratoire Poncelet home page. |
|
Site design by Paul Zinn-Justin (2005) |