Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.mccme.ru/ZetaConference/?name=zudilin
Дата изменения: Unknown
Дата индексирования: Sun Dec 23 01:53:40 2007
Кодировка:

Поисковые слова: m 13
Conference Zeta Functions

Zeta Functions

September 18 - 22, 2006, Moscow, Russia

Laboratoire J.-V. Poncelet

General

Announcement

Participants

Practical details

Program

Wadim Zudilin

MGU, Moscow, Russia

Magic of Apery's numbers

The integers $ a_n=\sum_{k=0}^n{\binom nk}^2{\binom{n+k}k}^2, n=0,1,2,... $ appear as denominators of rational approximations to $\zeta(3)=\sum_{k=1}^\infty k^{-3}$ in Apery's proof of the irrationality of $\zeta(3)$. The sequence satisfies a polynomial recursion, namely, $ (n+1)^3a_{n+1}-(2n+1)(17n^2+17n+5)a_n+n^3a_{n-1}=0$, where $n=0,1,2,...$, and admits several curious congruence properties. We survey some recent results and open problems related to Apery's numbers $a_n$, $n=0,1,2,...$, and their generalizations.


Go to the Laboratoire Poncelet home page.
Site design by Paul Zinn-Justin (2005)