Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.ipa.nw.ru/conference/wpltn2012/docs/25/1500%20sokolov.pdf
Äàòà èçìåíåíèÿ: Mon Oct 1 12:19:22 2012
Äàòà èíäåêñèðîâàíèÿ: Sun Feb 3 17:52:45 2013
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: http www.sai.msu.su sn
OPEN JOINT-STOCK COMPANY «RESEARCH-AND-PRODUCTION CORPORATION "PRECISION SYSTEMS AND INSTRUMENTS»

Laser retroreflector systems of new generation
M..Sadovnikov, A.L.Sokolov, N.M.Soyuzova

Saint-Petersburg, 2012


2
Retroreflector systems used in laser ranging of geodetic and navigation satellites
GFZ-1 / Russia LARETS / Russia

WESTPAC / Russia Ajisai / Japan ETALON / Russia LAGEOS / USA

METEOR / Russia

Compas / China GLONASS / Russia

GIOVE / Russia

GPS 35,36 / Russia


3

Main Laser Retroreflector System of "RPC "PSI"
Type of spacecraft Etalon - 1, -2 (Russia) GPS - 35, - 36 (USA) GLONASS (Russia) REFLECTOR (Russia - USA) Meteor-3-1 (Russia) LARETS (Russia) Mozhaets (Russia) GLONASS- (Russia) GLONASS- 729 (Russia) GIOVE-A (S) (Galileo) GIOVE-B (S) (Galileo) GOCE (S) BLITS 2009 (Russia) GLONASS-K SPECTOR-R(Russia) Altitude, km 19 100 20 150 19 100 1 020 1 020 690 690 19100 19100 23 916 23 916 295 832 19100 330 000 Launching 1989 1993, 1994 2000 - 2006 2002 2002 2003 2003 from 2003 to present 2008 2006 2008 2009 2009 2010 2010 Number of spacecrafts 2 2 8 1 1 1 1 17 1 1 1 1 1 1 1 Number of CCR on a spacecraft 2142 32 132 32 sphere 60 6 112 112 76 67 7 autonomous sphere 123 100 Type of reflective coating Al Al Al Al Al Al Al Al TIR Al Al Al Al TIR Ag


4

The main directions of laser retroreflector systems (LRS) optimization:
1. · · · New interference coatings (generally ­ gradient) with a view to: optimize FFDP of reflected radiation to compensate speed aberrations; reduce solar heating influence; decrease a loss of light in CCR;

2. Size of CCR and value of CCR dihedral angles. 3. LRS configuration for an accurate correspondence to the center of mass of the satellite. 4. Remote control of onboard LRS FFDP · Rotation of CCR array; · Variation of the polarization state of laser radiation. 5. Glass spherical satellites of BLITS type ­ absolute correspondence of measurements to the center of mass of the spacecraft.

Goals:
· · decrease of the correction to the results of measurement; increase of cross-section.


5

FFDP and Cross Section of CCR(TIR). Diameter ­ 28 mm

5 4 3 2 1
0.012


5 5 4.5 4 3.5 3 0.92 2.5

CS of one CCR
(

Average CS for the four turned CRR 5 4 3 2 1

106 m2)


5 4.75 4.5 4.25 4 3.75 3.5 3.25 3 2.75 0.92 2.5 2.25 2 1.75 1.5 1.25

(

106 m2)

2

1.5

1

1 0.75 0.5 0.25

0.5

0

0 0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 r 3.9

5.5

6

6.5

7

7.5

8

8.5

9

9.5 10

10

2

4

6

8



0 0

0.25 0.5 0.75

1

1.25 1.5 1.75

2

2

2.25 2.5 2.75

3

3.25 3.5 3.75

4

4.25 4.5 4.75 r

5

5.25 5.5 5.75

6

6.25 6.5 6.75

7

7.25 7.5 7.75

8

8.25 8.5 8.75

9

9.25 9.5 9.75 10

4

3.9

6

8



CS = 1,2 10 m2
6

CS = 1,9 106 m2


6

New interference coatings
CCR's far field diffraction patterns as a function of the phase shift on reflection

=0

= 20

= 45

= 60

= 90

= 120

6


7

Far Field Diffraction Pattern of CCR with dielectric interference coatings of faces (the phase shift = 0)
Polarization structure in the near field:
6 CS =2,4 10

2

Averaged CS =1,9

10 6

2

and far-field:

Speed aberration for the GLONASS system is 5 "

5"

7


8

Reduce solar heating influence










9

CCR with the controlled value of the dihedral angle. Optimization of FFDP
Optimization of FFDP: · for low-orbit triaxially oriented spacecrafts;

· for medium spacecrafts in a circular placement in LSR array; · for geostationary satellites.

V


L

R

L


10 CCR with the controlled value of the dihedral angle. Diameter 50 mm. Dihedral angle 2,4"
CS ( 10 2 ) 40
6
40 35
5

Averaged CS ( 106 2 ) 6 5 4
0 .8 6 6 5 .5

30 20 10

30

4 .5

4

25

3 .5

3

0.8 120

15

10

5

3 2 1
0 .0 6 3

2 .5

2

1 .5

1

0 .5

0

0 0

0 .5

1

1 .5

0

0

1

2

3

4 r

5 2 .1 8 6 4 0 6 9 4 6 2 1 9 2 2 2

6

7

8

9

10

2 4

6

8


Range of 24 CCR

2 4 6 8
r

2

2 .5

3

3 .5

4

4 .5

5

5 .5

6

6 .5

7

7 .5

8

8 .5

9

9 .5 10

10




11

CCR with different values of the dihedral angle. 28 mm and 50 mm
dihedral angle Equivalent diameter - 28 mm On e C C R Range of CCR Equivalent diameter - 50 mm On e C C R Range of CCR

2,2

2,4

2,6


12

Optimization of LRR array configuration

S

S

t

t

12


OPEN JOINT-STOCK COMPANY «RESEARCH-AND-PRODUCTION CORPORATION "PRECISION SYSTEMS AND INSTRUMENTS»

Improved ball-lens retroreflector satellite for operation in higher orbits
V.P.Vasilev, I.S.Gashkin


2

A problem of achieving submillimeter accuracy of laser range measurements
Retroreflector system
Ajisai Etalon GLONASS Lageos Larets Westpac BLITS LARES

Orbit altitude (km)
1400 19100 19100 5800 690 835 835 1450

Cross section ( 106 m2 )
23 55 60...120 9...15 0.2...0.8 0.04...0.2 0 .1 2...4

Variants of the correction to the results of measurement (mm) 20...50 10...40 5...25 2...10 1 ,5 0 .5 0 .1 ?


3

Spherical glass nanosatellite «BLITS»
The spacecraft "Meteor-M" with a spherical glass nanosatellite «BLITS» on board was launched on September 21st, 2009. The basic parameters of the nanosatellite «BLITS»: - diameter.....................................................170 mm - weight.........................................................7.5 kg - orbital altitude............................................. 835 - Cross Section.............................................100000 2. - error goal ................................................< 100

Spherical satellite «BLITS» non-assembled

Spherical satellite «BLITS» weighing 7.5 kg, ü 170 mm


4

Spherical glass nanosatellite «BLITS-M»
Expected target parameters of the nanosatellite «BLITS-» goal error CS time of service under the condition of a flight orbital altitude diameter mass
no more than 0.1 mm 0.3·106 - 1·106 m2 at least 10 years 1500 km ­ 3000 km no more than 250 mm at least 20 kg


Thank you for your attention!


12


28 . ­ 2" 0 28 . ­ 3" 56 . ­ 2" 56 . ­ 3"

­ 12

­ 18


16
«BLITS»
Satellite BLITS BLITS BLITS BLITS BLITS BLITS BLITS BLITS BLITS BLITS Site Name Altay Arequipa Beijing Borowiec Changchun Concepcion Grasse Graz Greenbelt Haleakala Station 1879 7403 7249 7811 7237 7405 7845 7839 7105 7119 7501 7840 1893 1824 7308 1868 Start Date End Date No. No. Points Passes 192 26 28 1 597 11 136 665 290 125 149 512 35 51 100 65 1 ,3 4 7 83 113 3 2 ,8 6 8 44 1 ,1 3 3 4 ,7 4 8 2 ,3 1 6 647 796 3 ,5 5 2
BLITS Tahiti Tanegashima Wettzell Yarragadee Zimmerwald 7124 7358 8834 7090 7810 03-Dec-2009 28-Oct-2009 30-Sep-2009 26-Sep-2009 30-Sep-2009 27-Jan-2012 14-Nov-2011 08-Feb-2012 08-Feb-2012 06-Feb-2012 85 30 163 1,312 899 530 155 638 8,905 6,624

Satellite
BLITS BLITS BLITS BLITS BLITS BLITS BLITS BLITS BLITS BLITS BLITS BLITS

Site Name
Lviv Matera McDonald Monument Peak Mount Stromlo Potsdam Riga Riyadh San Fernando San Juan Shanghai Simeiz

Station
1831 7941 7080 7110 7825 7841 1884 7832 7824 7406 7821 1873

Start Date
25-Sep-2009 29-Sep-2009 11-Oct-2009 07-Oct-2009 30-Sep-2009 25-Sep-2009 02-Oct-2009 26-Apr-2010 01-Oct-2009 24-May-2010 06-Oct-2009 24-Sep-2009

End Date
25-Sep-2009 19-Jan-2012 07-Jan-2012 03-Feb-2012 05-Feb-2012 08-Feb-2012 26-Oct-2011 25-Aug-2010 01-Feb-2012 09-Feb-2012 31-Jan-2012 25-Sep-2011

No. No. Points Passes
1 242 35 396 334 264 102 10 22 95 136 56 3 1,144 123 3,139 1,231 2,251 555 58 50 680 669 336

24-Sep-2009 20-Nov-2011 12-Apr-2010 0 3 - Oc t - 2 0 1 0 11-Mar-2010 28-Sep-2009 0 2 - Oc t - 2 0 0 9 2 8 - Oc t - 2 0 0 9 26-Sep-2009 30-Sep-2009 03-Dec-2009 02-Nov-2009 25-Sep-2009 0 7 - Oc t - 2 0 1 1 03-Jan-2012 11-Mar-2010 07-Feb-2012 31-Jan-2012 06-Dec-2011 08-Feb-2012 07-Feb-2012 05-Feb-2012 11-Jan-2012 07-Feb-2012

BLITS Hartebeesthoek BLITS BLITS BLITS BLITS BLITS Herstmonceux Katzively Kiev Koganei KomsomolskNa-Amure

26-Sep-2009 23-Sep-2011 28-Sep-2009 16-Nov-2011 1 5 - Oc t - 2 0 0 9 26-Sep-2009 02-Feb-2012 1 2 - Oc t - 2 0 1 1

158
BLITS

206
BLITS

688
BLITS

416
BLITS


19
( )
1

( ­ 20%)

()

(2)

28 ()





2,4 ± 0,2

4,25 10

6

2

28 ()







3 - 4
2,4 ± 0,2

4 10

6

3

36



2 10

6





10 10
4

6



.

50



2,4 ± 0,2

60·106