Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.ipa.nw.ru/PAGE/EDITION/transaction/transaction_ann23/213.htm
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 03:21:56 2016
Кодировка: UTF-8

Поисковые слова: regolith
Keywords_213
Математическое моделирование процессов синхронной регистрации сигналов детекторов, движущихся в различных квазиинерциальных системах отсчета
В. О. Гладышев1, В. Л. Кауц2, П. С. Тиунов1
1Московский государственный технический университет им. Н. Э. Баумана Минобрнауки, г. Москва, Россия ,br>2Астрономический центр Физического института им. П. Н. Лебедева, г. Москва, Россия
Аннотация:
В работе получены пространственно-временные преобразования независимых переменных, которые можно использовать при описании синхронной регистрации сигналов детекторами, движущимися в произвольных инерциальных системах отсчета. Теоретический подход открывает путь для моделирования процессов передачи данных в квазиинерциальных системах отсчета при нерелятивистских скоростях движения, а также для моделирования процессов передачи данных в системе спутник-Земля в реальном режиме времени с учетом влияния трехмерного поля скоростей движения атмосферы.
Ключевые слова:
электромагнитное излучение, сигнал, математиѓческое моделирование, распространение, анизотропия.

Mathematical Modeling of Synchronous Signal Registration Processes by the Detectors Moving in the Various Quasi-Inertial Frame Systems
V. O. Gladyshev, V. L. Kauts, P. S. Tiunov
Abstract
A new method of constructing general transformations based on using the noninvariant characteristics of partial differentials of independent variables of the Lorentz's group is proposed in this work. Obtained transformations have a more general form, can be used in the description of experiments with the measurement of partial differentials of independent physical variables and satisfy the relativity principle. The calculations of the uniformly accelerated clock characteristic time and the time delay of the astrophysical signal registration by removed detectors are produced. In the case of the metering procedure, in which the total differential of physical variable is measured, the new transformations turn into the input form of Lorentz's group.
The analysis of the results of theoretical description and experimental investigation for the processes of electromagnetic radiation propagation in moving media attests that effects of moving medium electrodynamics have an influence on the wide class of experiments even for non-relativistic velocities of media motion.
In order to describe the effect of distortion of the trajectory of an electromagnetic wave in atmosphere, it is needed to use the solution of the dispersion equation of moving medium electrodynamics for the spatial case of atmosphere motion.
The solution of the dispersion relation for the propagation of an electromagnetic wave in a medium is valid for an atomic layer with a thickness on the order of a few wavelengths of the electromagnetic radiation. The only properties available for calculation on each layer of the medium, are the frequency and the angle of incidence on the interface between two media. The motion of a given layer of the medium affects the coordinates of the point at which the wave front intersects the next layer. In general, regarding a region of the medium in which the velocity is not constant, it is necessary to solve a dispersion equation for each neighboring local region of the medium. The complete solution is the set of local solutions for the regions in which the velocity of the medium is constant at the physically necessary accuracy.
The propagation of an electromagnetic radiation in a rotating medium is determined by superposition of the primary wave and the secondary waves appearing as a result of the interaction of the electromagnetic radiation with atoms of the moving medium. Solving a dispersion equation makes possible to determine the radiation wave vector in any local region of the trajectory with an allowance for a spatial distribution of the medium velocity.
Keywords:
electromagnetic radiation, signal, mathematical modeling, propagation, anisotropy.