Определение орбит и эллипсоидов рассеяния
потенциально опасных для Земли астероидов
А. С. Заботин, Ю. Д. Медведев
Институт прикладной астрономии РАН, Санкт-Петербург
Аннотация:
Оценивается влияние ошибок наблюдений на определяемые из улучшений параметры
орбит потенциально опасных для Земли астероидов. Выбраны 22 потенциально
опасных астероида, имеющие несколько наблюдаемых оппозиций и достаточное
число наблюдений. Проверялось два метода: 1-й метод, основанный на
методе Монте-Карло, позволяет вычислять методом наименьших квадратов
эллипсоиды рассеяния с учетом нелинейной связи ошибок наблюдений с
ошибками определяемых из улучшения параметров орбиты; 2-й метод
позволяет получать параметры орбиты и эллипсоид рассеяния методом
наименьших модулей. Показано, что для 13 астероидов область рассеяния,
полученная методом наименьших модулей, более надежно предсказывает область
начальных значений параметров орбиты астероидов, чем классическая схема
оценки этой области. Учет нелинейных членов также позволяет повысить
надежность предсказания области рассеяния. Кроме того, для 13 астероидов
по наблюдениям первой оппозиции методом наименьших модулей получена более
точная орбита, чем полученная общепринятым методом наименьших квадратов.
Поэтому для повышения надежности предсказаний предлагается выполнять улучшение
орбит новых астероидов не только общепринятым
методом наименьших квадратов, но также и методом наименьших модулей.
Ключевые слова:
радиоинтерферометрия со сверхдлинными базами, потенциально опасные астероиды, орбиты рассеяния астероидов, эллипсоиды рассеяния астероидов, метод наименьших квадратов, метод наименьших модулей, область рассеяния, ошибки наблюдений, надежность предсказаний.
Determination of Orbits and Dispersion Ellipsoids of Asteroids
Potentially Hazard for the Earth
A. S. Zabotin, Yu. D. Medvedev
Abstract:
The influence of the observation errors distribution on the orbits of 22 asteroids potentially hazard for the Earth is considered. These asteroids have sufficiently great numbers of observations at a few last oppositions. Two methods were used: 1) the dispersions are determined taking into account the nonlinear propagation of errors, 2) the orbits and dispersions are determined by the method of least modules. For 13 asteroids the dispersion ellipsoids computed by the method of least modules is more real then the ones computed by the method of least squares. The dispersion ellipsoid calculated by the method taking into account the nonlinear relations is also more real. Orbits computed by the method of least modules is more accurate then ones computed by the method of least squares for 13 asteroid. Therefore the orbital parameters for newly discovered asteroids should be computed not only by the conventional method of least squares but also by the method of least modules.