Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.iki.rssi.ru/people/yy_grl2008.pdf
Дата изменения: Mon Dec 22 16:34:40 2008
Дата индексирования: Tue Oct 2 02:24:48 2012
Кодировка:

Поисковые слова: lmc
Click Here

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L01101, doi:10.1029/2007GL030281, 2008

Full Article

for

Comment on ``Interplanetary origin of intense geomagnetic storms (Dst < ю100 nT) during solar cycle 23'' by W. D. Gonzalez et al.
Y. I. Yermolaev1 and M. Y. Yermolaev1
Received 5 April 2007; revised 25 July 2007; accepted 25 October 2007; published 3 January 2008.

Citation: Yermolaev, Y. I., and M. Y. Yermolaev (2008), Comment on ``Interplanetary origin of intense geomagnetic storms (Dst < ю100 nT) during solar cycle 23'' by W. D. Gonzalez et al., Geophys. Res. Lett., 35, L01101, doi:10.1029/ 2007GL030281.

[1] Gonzalez et al. [2007] studied the interplanetary causes of 87 intense geomagnetic storms (Dst < ю100 nT) that occurred during solar cycle 23 (1997 ­ 2005). Their classification of interplanetary causes of storms includes CIR (corotating interaction region associated with a high speed stream), MC (magnetic cloud), ``Sh'' (sheath field with southward component of interplanetary magnetic field), ``Sh + MC'' (sheath field followed by a magnetic cloud), SBC (a sector boundary crossing), ``S + MC'' (magnetic cloud compressed by a shock), and ``Complex'' (for a case in which none of the other cases were identified). The category of ``ICMEs'' (interplanetary coronal mass ejections) corresponds to several types of structures that are not magnetic clouds, namely that they have not the typical signatures for magnetic clouds [Burlaga et al., 1987]. They found that the most common interplanetary structures leading to the development of an intense storm were magnetic clouds, sheath fields, sheath fields followed by a magnetic cloud and corotating interaction regions leading high speed streams and presented the relative importance of each of those driving structures in three phases of solar cycle: rising, maximum and declining phases. [2] However, the interaction between two CMEs close to the Sun [Gopalswamy et al., 2001, 2002] and between magnetic clouds near the Earth [see, e.g., Burlaga et al., 2001; Berdichevsky et al., 2003; Gonzalez-Esparza et al., 2004; Farrugia et al., 2006a; and references therein] has been reported. A number of papers showed that several strong magnetic storms (see, for instance, events on 31 March, 2001, minimum Dst value of ю387 nT, 11 ­ 13 April, 2001, Dstmin = ю271 nT [Wang et al., 2003]; 28 ­ 30 October, 2003, Dstmin = ю363 nT [Veselovsky et al., 2004; Skoug et al., 2004]; 20 November, 2003, Dstmin = ю472 nT [Ermolaev et al., 2005]; 8 ­ 10 November, 2004, Dstmin = ю373 nT [Yermolaev et al., 2005]) have been generating by multiple interacting magnetic clouds. Recently Farrugia et al. [2006b] studied interplanetary conditions for magnetic storms during 1995 ­ 2003 and found ``that a significant number of our large events (6 out of 16)
1

consisted of ICMEs/magnetic clouds interacting with each other forming complex ejecta.'' Xie et al. [2006] studied 37 long-lived geomagnetic storms (LLGMS events) with Dst < ю100 nT and the associated CMEs which occurred during 1998 ­ 2002 and found that 24 of 37 events were caused by successive CMEs and number of interacting magnetic clouds was observed from 2 up to 4. [3] Thus, classification of interplanetary sources of strong magnetic storms used by Gonzalez et al. [2007] is not complete and does not contain the important category of sources (interacting magnetic clouds) widely discussed in the literature. Therefore, though the obtained results are of limited interest, the used classification excludes from consideration the important mechanism on the solar-terrestrial physics resulting in strong Space Weather events. [4] Acknowledgments. Work was in part supported by RFBR, grant 07-02-00042.

References
Berdichevsky, D. B., C. J. Farrugia, R. P. Lepping, I. G. Richradson, A. B. Galvin, R. Schwenn, D. V. Reames, K. W. Ogilvie, and M. L. Kaiser (2003), Solar-heliospheric-magnetospheric observations on 23 March ­ 26 April 2001: Similarities to observations in April 1979, in Solar Wind 10, AIP Conf. Proc., edited by M. Velli, pp. 758 ­ 761, Am. Inst. of Phys., Woodbury, N. Y. Burlaga, L. F., K. W. Behannon, and L. W. Klein (1987), Compound streams, magnetic clouds, and major geomagnetic storms, J. Geophys. Res., 92, 5725 ­ 5734. Burlaga, L. F., R. M. Skoug, C. W. Smith, D. F. Webb, T. H. Zurbuchen, and A. Reinard (2001), Fast ejecta during the ascending phase of solar cycle 23 ACE observations, 1998 ­ 1999, J. Geophys. Res., 106, 20,957 ­ 20,977. Ermolaev, Y. I., et al. (2005), Solar and heliospheric disturbances that resulted in the strongest magnetic storm of November 20, 2003 (in Russian), Geomagn. Aeron., 45(1), 23 ­ 50. (Geomagn. Aeron., Engl. Transl., 45(1), 20 ­ 46.) Farrugia, C. J., V. K. Jordanova, M. F. Thomsen, G. Lu, S. W. H. Cowley, and K. W. Ogilvie (2006a), A two-ejecta event associated with a two-step ge omagne tic stor m, J. Geop hys. Res. , 111 , A 11104, doi:10. 1029/ 2006JA011893. Farrugia, C. J., H. Matsui, H. Kucharek, V. K. Jordanova, R. B. Torbert, K. W. Ogilvie, D. B. Berdichevsky, C. Smith, and R. Skoug (2006b), Survey of intense Sun-Earth connection events (1995 ­ 2003), Adv. Space Res., 38(3), 498 ­ 502. Gonzalez, W. D., E. Echer, A. L. Clua-Gonzalez, and B. T. Tsurutani (2007), Interplanetary origin of intense geomagnetic storms (Dst < ю100 nT) during solar cycle 23, Geophys. Res. Lett., 34, L06101, doi:10.1029/2006GL028879. Gonzalez-Esparza, A., A. Santillan, and J. Ferrer (2004), A numerical study of the interaction between two ejecta in the interplanetary medium: Oneand two-dimensional hydrodynamic simulations, Ann. Geophys., 22, 3741 ­ 3749. Gopalswamy, N., S. Yashiro, M. L. Kaiser, R. A. Howard, and J.-L. Bougeret (2001), Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism?, Astrophys. J., 548, L91 ­ L94. Gopalswamy, N., S. Yashiro, M. L. Kaiser, R. A. Howard, and J.-L. Bougeret (2002), Interplanetary radio emission due to interaction between two coronal mass ejections, Geophys. Res. Lett., 29(8), 1265, doi:10.1029/ 2001GL013606. Skoug, R. M., J. T. Gosling, J. T. Steinberg, D. J. McComas, C. W. Smith, N. F. Ness, Q. Hu, and L. F. Burlaga (2004), Extremely high speed solar

Space Plasma Physics Department, Space Research Institute, Russian Academy of Sciences, Moscow, Russia. Copyright 2008 by the American Geophysical Union. 0094-8276/08/2007GL030281$05.00

L01101

1 of 2


L01101

YERMOLAEV AND YERMOLAEV: COMMENTARY

L01101

wind: 29 ­ 30 October 2003, J. Geophys. Res., 109, A09102, doi:10.1029/ 2004JA010494. Veselovsky, I. S., et al. (2004), Solar and heliospheric phenomena in October November 2003: Causes and effects (in Russian), Kosm. Issled., 42(5), 453 ­ 508. (Cosmic Res., Engl. Transl., 42(5), 435 ­ 488.) Wang, Y. M., P. Z. Ye, and S. Wang (2003), Multiple magnetic clouds: Seve ral e xamples dur ing M a rch ­ A pril 2001, J. Ge ophys. Re s. , 108(A10), 1370, doi:10.1029/2003JA009850. Xie, H., N. Gopalswamy, P. K. Manoharan, A. Lara, S. Yashiro, and S. T. Lepri (2006), Long-lived geomagnetic storms and coronal mass ejections, J. Geophys. Res., 111, A01103, doi:10.1029/2005JA011287.

Yermolaev, Y. I., et al. (2005), A year later: Solar, heliospheric, and magnetospheric disturbances in November 2004 (in Russian), Geomagn. Aeron., 45(6), 723 ­ 763. (Geomagn. Aeron., Engl. Transl., 45(6), 681 ­ 719.)
ююююююююююю ююююююююююю

M. Y. Yermolaev and Y. I. Yermolaev, Space Plasma Physics Department, Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/ 32, Moscow 117997, Russia. (yermol@iki.rssi.ru)

2 of 2