Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.gao.spb.ru/russian/psas/kodata/files/ffk2010.pdf
Äàòà èçìåíåíèÿ: Fri Nov 8 17:37:50 2013
Äàòà èíäåêñèðîâàíèÿ: Thu Feb 27 23:11:45 2014
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: cygnus
- .. Ioffe Physical-Technical Institute of the Russian Academy of Sciences




(. , 7-10 2010 .)




(. , 6 2010 .)



Third Workshop on Precision Physics and Fundamental Physical Constants
(St. Petersburg, December, 7-10, 2010)

An international satellite meeting

Fifty years of efforts toward quantum SI units
(St. Petersburg, December, 6, 2010)

Book of abstracts

-, 2010 (St. Petersburg, 2010)



/ Contents

An international satellite meeting "Fifty years of efforts toward quantum SI units" (abstracts in English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 " " ( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 S. G. Karshenboim, Constants, units and so on . . . . . . . . . . . . . . . . . F. Piquemal, Determination of fundamental constants in quantum electrical metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. J. Mohr, Recent progress in fundamental constants and the International System of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E. de Mirand´s, Linking macroscopic mass standards to physical constants . . e J. Fischer, Determination of the Boltzmann constant and new definition of the kelvin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. E. Himbert, SI units and Fundamental Physics . . . . . . . . . . . . . . . J. Guena, Testing the stability of fundamental constants using LNE-SYRTE ´ clock ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Eidelman, Status of muon g - 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 8 9

. 10 . 11 . 12 . 13 . 14 . 15

Third Workshop on Precision Physics and Fundamental Physical Constants (abstracts in Russian) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 " " ( ) . . . . . . . . . . . 17

. . , . . . . . . . . . . , . . , . . , . . , . . . . . . . . . . . . . . .. ,. . , . . , . , µ = mp /me . . . . . . . . ,. . , . . , D/H . . . . . . . . . . . . . . . . . . . . . , . . , . . , . . , G. Plunien, . . , . . . . . . . . . . . . . K. Pachucki, . . , . . . . . . . . . . . . . . . . . . . . . . . 20 21 22 23 24 25 26

3


. . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . , . . , . , . , . , . , .. , - 1S - 2S . . . . . . . . . . . . . . . . . . . . , . . , . . , . . , . . . . , . . . . , . , . , . , . , . , : , , . . . . . . . . . . . . . . . . . . . . , me /mp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 1s- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . , . . , . . , . . . . . . . . . . . . . . . . . , . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . , . . , . . , . . , . . , LEPTA . . . . . . . . . . . . . . . . . . , , : . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . , H2 O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . , . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . K. Pachucki, Accurate theory of the hydrogen molecule . . . . . . . . . . . . . . , . . , , . . . . . . . , . . . . . . . . . . . . . . . . . . . . . , . . , . . . . . . . . . . . . . . . . . . . . . . , . . , . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . , . . , . . , . . . . . . . . . . . . . . . . .

. 27 . 28

. 29 . 30 . 31

. 32 . 33 . 34 . 35 . 36 . 37 . 38 . 39 . 40

. 41 . 42 . 43 . 44 . 45 . 46

. 47

. 48

4


. . , . . . . . , . . . , -2000 (g-2) . . , . . , C P - ? . . . . . . . . . . . . . . . . . . . . . . . . . , , . . . . . . . . . . . . . . . . . . . . , - . . . . . . . . . . . , g . . . . . . . . . . . . . . . . . . . . . . . . . . R. Engels, M. Westig, K. , M. , F. Rathmann, H. Paetz gen. Schieck, G. Schug, A. , H. Stroeher, n=2 . . . . . . , . . , . . , . . , G. Plunien, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . , . . . . , . PbF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . , . . , . . , G. Plunien Th. St¨ er, ohlk . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . , C. G. Parthey, J. Alnis, A. Beyer, Th. Ude R. Holzwarth, D. Rovera, M. Abgral l, Ph. Laurent, T.W. H¨ sch, an GPS . . . . . . . . . . . . . . . , . . , : . . . . . . . , . . , . . , . . , . . . . . . . . , . . , . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , .. , . . , . . , P,T- Eu0.5 Ba0.5 TiO3 : Eu++ . . . . . . . . , . . . . . . . . . . . . . , h e , . . . . . . . . . . . . . . . . .

49 50 51 52 53 54 55

56

. 58

. 59

. 60 m,

. 61 . 62 . 63 . 64

. 65

. 66 . 67

. 68

5


. . , . . , . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Engels, M. Westig, K. , M. , F. Rathmann, H. Paetz gen. Schieck, G. Schug, A. , H. Stroeher, n=2 . . . M.N. Achasov, P.M. Astigeevich, V.M. Aulchenko, A.Yu. Barnyakov at al., Spherical Neutral Detector for experiments at VEPP-2000 e+ e- collider . . . , . . , . . , . M. ., -3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 69

. 70 . 71 . 72

6


An international satellite meeting "Fifty years of efforts toward quantum SI units"
(St. Petersburg, December, 6, 2010)

Abstracts

" "
(. , 6 2010 .)

( )

Scientific organizers: Savely Karshenboim (VNIIM, St. Petersburg, and MPQ, Garching) and Francois Piquemal (LNE, Paris) ¸ Lo cal organizer: Alexandre Ivanchik (Ioffe Institute, St. Petersburg) The meeting is supp orted in part by A.F. Ioffe Physical-technical institute and Particle data group and endorsed by the CODATA Task group on fundamental constants, Laboratoire national de metrologie et d'essais and Russian national CODATA task group on fundamental constants. 7


Constants, units and so on ­ ,
S. G. Karshenboim D. I. Mendeleev Institute for Metrology, St. Petersburg, 190005, Russia Max-Planck-Institut fur Quantenoptik, Garching, 85748, Germany ¨ Any practical system of units and, in particular, SI, is a system of definitions of units which should allow their efficient realization. Definitions of units in terms on natural constants have been attractive for a while, but until now it was hard to realize such a system in practice. Now, it is a good time to re-define the SI units in such a way that they will be realized in terms of natural constants and quantum phenomena. A purpose of the satellite meeting is to review the present state of art in the field and in particular recent progress in determination of the fundamental constants and prospects in realization of quantum units.

, , , ­ , . , . , . - , , .

8


Determination of fundamental constants in quantum electrical metrology
F. Piquemal Laboratoire national de metrologie et d´ssais (LNE) ´ e The reform of the International System of Units (SI) towards a system where all units are defined in terms of constants of Nature is undoubtedbly one of the key issues of the modern metrology. Giving up the present definition of the mass unit defined by means of an unique material artefact, the international kilogram prototype, the trend is to define the mass unit by fixing the value of the Planck constant h. In the same way, the ampere, the kelvin and the mole would be redefined by fixing the elementary charge e, the Boltzmann constant kB and the Avogadro constant NA respectively. This present context arises partly from the metrological applications of the quantum Hall effect (QHE) and the ac Josephson effect (JE). These phenomena link the electrical quantities directly to h and e, through the von Klitzing constant RK and the Josephson constant KJ , which are presumably equal to h/e2 and 2e/h, respectively. They insure a high level of reproducibility and a unique representation of the electrical units worldwide. Moreover, through the development of highly accurate electromechanical systems such as the calculable capacitor or the watt balance, the use of the Josephson array voltage standards (JAVS) and the quantum Hall resistance standards (QHRS) allows the determination of the fine structure constant and h. hanks to the great progress of nanofabrication, a new class of quantum electrical devices has emerged, the so-called Single Electron Tunnelling (SET) devices based on the Coulomb blockade. Similar to JAVS and QHRS, the SET devices could be the basis for a quantum current standard whose amplitude is equal to the product of the elementary charge and a frequency. The Coulomb blockade of the SET provides the third leg of the quantum metrological triangle (QMT). Its closure by applying Ohm's law to the quantities observed in JAVS, QHRS and SET devices, or by means of an electron counting capacitance standard (ECCS) is a great challenge. In addition, by combining the results from the watt balance, the calculable capacitor and a single-electron tunnelling experiment, the elementary charge e can be determined directly. Until now, the evaluation of e is derived from a complex calculation and is no more related to a single experiment. The talk will deal with the quantum electrical metrology and the determination of , h and e. The general principles of the Thompson-Lampard calculable capacitor and the watt balance will be given along with their main features. Then the QMT experiments will be described, mainly the experimental set-up which involves the use of cryogenic current comparators.

9


Recent progress in fundamental constants and the International System of Units
Peter J. Mohr National Institute of Standards and Technology, Gaithersburg, MD, USA 20899-8420 The International System of Units (SI) is likely to undergo a somewhat revolutionary change in the near future. The Consultative Committee on Units (CCU) has recommended that new definitions of the kilogram, ampere, kelvin, and mole, based on specified values of the Planck constant, the elementary charge, the Boltzmann constant, and the Avogadro constant, should be adopted. In its most recent meeting in September 2010, the CCU went a step further and drafted a new proposed definition of the entire SI based on simply specifying that a particular set of constants would have certain values when expressed in the new SI units. This is a break from the earlier concept of measurement standards based on tangible artifacts, although the new type of definition is already effectively in place for the meter. This new definition of the SI would have a significant impact on the values of the fundamental constants, because many of them would then have either exact values or values with greatly reduced uncertainties. The proposed redefinition and its effect on the fundamental constants will be discussed.

10


Linking macroscopic mass standards to physical constants
Estefan´a de Mirand´s i e Bureau International des Poids et Mesures Pavil lon de Breteuil, 92312 S`vres cedex, France e Since 1889, the unit of mass in the International System (SI) -the kilogram- has been defined as the mass of the international prototype of the kilogram (IPK) which is kept at the BIPM, near Paris. However, the mass of this macroscopic artifact is not a natural invariant or "fundamental"quantity such as, for example, the mass of the electron. In addition, from several mass comparisons involving the IPK, scientists suspect that the mass of IPK may be slightly decreasing in time with a relative average rate of 0.5 â 10-9 /year. Therefore, the long-term stability of of the SI mass unit is not assured. To correct this situation, we need a new standard whose mass, ms , is truly invariant in time and space. Two routes are currently being explored: - ms based on the mass of an atom of carbon-12 , ms m(12 C). - ms derived from a given energy equivalent Es , ms = Es /c2 using the well known Einstein's equation (c is the speed of light in vacuum). If this energy is now expressed in terms of frequency f , E = hf , (h is the Planck constant) the mass standard can be defined as that mass with a given associated frequency f in the rest frame of the particle: m s = ( h /c 2 ) f (1)

Notice that in equation (1) both h and c are physical constants, invariant in space and time, and therefore ms becomes also an invariant. To ensure the continuity of the mass unit at the time of the redefinition, the challenge is to measure before very accurately ms in terms of m(IPK). Two outstanding experiments are at present claiming a relative uncertainty on ms /m(IPK) of about 30 â 10-9 : - the - the Internat is fixed, international Avogadro coordination (IAC) pro ject measures the ratio m(12 C)/m(IPK). watt balance experiment measures the ratio h/m(IPK). Notice that in the present ional System of Units (SI) the numerical value of the speed of light in vacuum c and therefore has no uncertainty.

The value of h/m(12 C), the units of which are independent of the kilogram, is already well-known (with a relative uncertainty better than 0.7 â 10-9 ) and thus serves as a check on the consistency of these two methods. Once ms /m(IPK) is well known, one can fix the numerical value of the physical constant behind ms , instead of fixing m(IPK). It has been proposed to fix either the -1 -3 Avogadro constant NA = 12â10 (1kg·mol or the Planck constant h, with a preference for m 2 C) h. As far as realizing 1 kg in practice, the "Avogadro"route or the watt balance route to the kilogram are equivalent. The talk will review progress in establishing the traceability of h and m(12 C) to m(IPK), the related questions of realizing and disseminating the new definition of the kilogram and consequences for the metrology of mass and related quantities.

11


Determination of the Boltzmann Constant and new Definition of the Kelvin
Joachim Fischer Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany The unit of temperature T , the kelvin is presently defined by the temperature of the triple point of water. Thus, the kelvin is linked to a material property. Instead, it would be advantageous to proceed in the same way as with other units: to relate the unit to a fundamental constant and fix its value. By this no temperature value and no measurement method would be favoured. For the kelvin, the corresponding constant is the Boltzmann constant k , because temperature always appears as thermal energy k T in fundamental laws of physics. For fixing the value, the present value of k needs to be confirmed by several independent measurement methods. To encourage new determinations of the Boltzmann constant, the Consultative Committee for Thermometry (CCT) recommended "that national laboratories initiate and continue experiments to determine values of thermodynamic temperature and the Boltzmann constant" [1], which is also asked for by the recommendation of the International Committee for Weights and Measures (CIPM) concerning preparative steps towards new definitions of the kilogram, the ampere, the kelvin and the mole [2]. Within the CCT, a task group (TGSI) has considered the implications of changing the definitions of the above-mentioned base units of the SI, with particular emphasis on the kelvin and the impact of the changes on metrology in thermometry [3]. The findings will be reported in this contribution. In response to the recommendation of the CCT [1], many pro jects have been started to measure independently the value of the Boltzmann constant. These are acoustic gas thermometry, dielectric-constant gas thermometry using audio-frequency capacitance bridges, and measurement of n with refractive index gas thermometry applying optical resonators. Another promising methods for determining k are Doppler-broadening thermometry and Johnson noise thermometry. The progress achieved so far and the potential of the methods will be reviewed. [1] CCT Recommendation T2 (2005) to the CIPM: New determinations of thermo-dynamic temperature and the Boltzmann constant, Working Documents of the 23rd Meeting of the Consultative Committee for Thermometry. S`vres: BIPM, Document CCT/05-Rec-T2, 2005, http://www.bipm. e org/cc/CCT/Allowed/23/CCT_05_30_rev.pdf [2] CIPM Recommendation 1 (CI-2005): Preparative steps towards new definitions of the kilogram, the ampere, the kelvin and the mole in terms of fundamental constants. S`vres: BIPM, 2005 e [3] J. Fischer, S. P. Steur, M. Zhang: Report the base unit SI/Allowed/Do Gerasimov, K. D. Hill, G. Machin, M. Moldover, L. Pitre, Stock, O. Tamura, H. Ugur, D. R. White, I. Yang, and J. to the CIPM on the implications of changing the definition of Kelvin. S`vres: BIPM, 2007, http://www.bipm.org/wg/CCT/TGe cuments/Report_to_CIPM_2.pdf

12


SI units and Fundamental Physics
M. E. Himbert1 Laboratoire national de metrologie et d´ssais (LNE) ´ e The present definitions of the units in the SI gather serveral different approaches of what a definition of a unit could be and should be, according mainly to the use in measurement towards which scientists and less-scientists where focused at the time of the set up of the definition. The forthcoming evolution of the SI, proposed as a draft to the International Committee of Weights and Measures (CIPM) by its Consultative Committee of Units (CCU), tends to link almost any definition of base -and derived-units to fundamental physical constants (as presently for the metre and the ampere) and to constants of nature (as presently for second and kelvin). The choice of the constants on which the system will be settled, as welle as the words to be used in the definitions, result from long and fruitful discussions in many groups, involving scientists and (with overlap, of course) metrologists. The key point is the kind of physical model and of the related quantities which is to be fixed as reference for the definition of the units. This link has been emphasized in many cases in the history of the systems of units. The talk will try to illustrate in which way physical laws are taken into account in the measurement of physical constants, and so involved in the definitions of units, in the past and in the future. It will also recall the discussion about the way the definitions could be expressed, and try to emphasize which are the scientific goals behind these choices. (1) Marc Himbert is personal member of the CCU and participates in the Committee "Science and metrology "of the French Academy of Science

13


Testing the stability of fundamental constants using LNE-SYRTE clo ck ensemble
J. Guena ´ LNE-SYRTE, Observatoire de Paris, UPMC, UMR CNRS 8630 SYRTE is developing an ensemble of high performance atomic clocks and precision oscillators, whose main application is to contribute to the definition of the international atomic time TAI and S.I. second.This unique ensemble comprises three atomic fountain clocks, one is a dual Rb/Cs fountain and another is a transportable Cs fountain, all of them being primary frequency standards. The clock ensemble also comprises three optical lattice clocks, as well as ultra stable microwave and optical oscillators. This clock ensemble is connected to worldwide remote locations through satellite time and frequency transfer systems. Such an ensemble provides a large number of possibilities for testing fundamental physical laws, relying on the high accuracy and high stability of these devices. We will report on recent progress in the level of performance and on some fundamental tests using LNE-SYRTE clocks. This includes new and improved comparisons between the Rb and Cs fountain clocks. This also includes absolute frequency measurements of several optical frequencies using the atomic fountains, in particular the SYRTE transportable fountain FOM. We will present the application of these measurements to test the stability of fundamental constants with time. We will also give an overview on the present status of the Sr and Hg optical lattice clocks and on the development of optical links towards distant time and frequency comparison over Europe. In the future, improved fundamental tests will be done using the possibilities offered by the PHARAO cold atom space clock, developed by CNES, a ma jor component of the Atomic Clock Ensemble in Space (ACES) mission of the European Space Agency. We will give an overview of the status of the PHARAO/ACES pro ject.

14


St a t us o f M uo n g - 2
S. Eidelmana
a

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Comparison of the experimental and theoretical values of the muon magnetic anomaly remains one of the very few tests of the Standard Model (SM) hinting to its possible violation. The figure below shows the current status of the SM prediction including the recent reanalysis of the leading-order hadronic contribution [1] based on the new ISR measurement of the 2 channel by BABAR [2]. It also includes some other recent evaluations [3, 4, 5]. All e+ e- based results show a more than 3 deviation from experiment whereas the based estimate [5] is much closer to the measurement [6].

BNL-E821 2004

HMNT 07 (e e )
­285 ± 51



JN 09 (e e )
­299 ± 65



Davier et al. 10b ()
­157 ± 52

Davier et al. 10b (e e )
­312 ± 51



Davier et al. 10a (e e w/ BABAR)
­255 ± 49



BNL-E821 (WA)
0 ± 63

-600

-500

-400

-300

-200
exp µ

-100

0

100

aµ ­ a

â 10

­11

[1] M. Davier et al., Eur. Phys. J. C 66, 1 (2010). [2] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 103, 231801 (2009). [3] K. Hagiwara et al., Phys. Lett. B 649, 173 (2007). [4] F. Jegerlehner and A. Nyffeler, Phys. Repts. 477, 1 (2009). [5] M. Davier et al., Eur. Phys. J. C 66, 127 (2010). [6] G.W. Bennett et al., Phys. Rev. D 73, 072003 (2006).

15



" "



Third Workshop on Precision Physics and Fundamental Physical Constants

Abstracts

17



: . . ( . .. ) . . () : . . ( . .. ) : . . . . . . . . . . . . . . . . . . . . ( . .. ) ( ) ( . .. ) ( . .. ) () () ( ) () ( ) ( )

('10) - .. ( . .. ) (PDG), , , () - . .. . ( 10-02-06169-).






.. - . .. (), 1- . F=3, mF =0 F=4, mF =0 10-15 . , . , 1 . , , 10 , 1 . .

20



.. , .. , .. , .. - .. , -, () p- (100) n- . , . 2e2 /h, , M,- . , "0.7(2e2 /h)" , . , , , "0.7(2e2 /h)" . , - -. "0.7(2e2 /h)" - () [1], , . "0.7(2e2 /h)" , [1]. .

[1] N.T. Bagraev et al., J. Phys.:Condens. Matter, 20 (2008) 164202

21


µ = mp /me
.. a , .. a,b , .. a,b , .
a b c

c

- .. , -, , - , -, Universit´ Pierre et Marie-Curie, Institut d'Astrophysique de Paris, Paris, France e

µ = mp /me , H2 HD, . H2 HD , H2 HD , UVES Keck (b6 km/s). H2 HD , µ. [1], [2], [3], [4], [5] H2 µ µ/µ 2 â 10-5 z 2. µ , VLT/UVES: Q0027-1836, Q 0643-5038, Q 1232+0815 KECK/HIRES: Q 0812+3208. µ Q 0347-3819 and Q 0405-4418 Q 0528-2505. µ |µ/µ| < 1 â 10-5 . , µ. , µ, , , .

[1] Ivanchik A.V. et al., Astronomy and Astrophysics, Volume 440, Issue 1, pp.45, 2005 [2] Reinhold E., et al., Physical Review Letters, Volume 96, Issue 15, id. 151101, 2006 [3] Wendt M. & Reimers D., The European Physical Journal Special Topics, Volume 163, Issue 1, pp.197-206, 2008 [4] Wendt M. & Molaro P., arXiv:1009.3133, 2010 [5] Malec A.L. et al., Monthly Notices of the Royal Astronomical Society, Volume 403, Issue 3, pp. 1541-1555, 2010

22


D/H
.. a,b , .. a,b , ..
a b a

- .. , -, , - , -,

, - , b . HD H2 , . z 2, 10-12 . . - , , . , D/H. HD/H2 , . D/H=HD/2H2 =(2.97 ± 0.55) â 10-5 [1], [2] 0 b h2 = 0.0205+0..0025 . - 0020 0 0006 b h2 = 0.0226+0..0006 [3] - .

[1] Ivanchik A.V. et al., Monthly Notices of the Royal Astronomical Society, Volume 404, Issue 3, pp. 1583-1590, 2010 [2] Balashev S.A. et al., Astronomy Letters, Volume 36, Issue 11, pp.761-77, 2010 [3] Komatsu E. et al., arxiv/1001.4538, 2010

23



. . a,b , . . a , . . a , . . a , G. Plunienb
a b

, 198504 -, Institut fur Theoretische Physik, TU Dresden, 01062 Dresden, Germany ¨

() , . , , . -, -, [1], , . . , [2, 3]. - , . , .

[1] V. M. Shabaev, A. N. Artemyev, V. A. Yerokhin, O. M. Zherebtsov, and G.Soff, Phys. Rev. Lett. 86 (2001) 3959. [2] A. V. Volotka, D. A. Glazov, V. M. Shabaev, I. I. Tupitsyn, and G. Plunien, Phys. Rev. Lett. 103 (2009) 033005. [3] D. A. Glazov, A. V. Volotka, V. M. Shabaev, I. I. Tupitsyn, and G. Plunien, Phys. Rev. A 81 (2010) 062112.

24



.. () ­ , , . , , , . . , , . . , , .

25



K. Pachuckia , . . b Institute of Theoretical Physics, University of Warsaw, Hoza 69, 00­681 Warsaw, Poland b - , . 29, . 195251, [1, 2] 23 P Z 10. m7 m2 /M 6 . . [3, 4], . 23 P0 - 23 P2 [4] 27 â 10-9 ,
-1 a

= 137. 035 999 55( 64) ( 4) ( 368) .

, ­ , ­ .

[1] K. Pachucki and V. A. Yerokhin, Phys. Rev. A 79, 062516 (2009) [ibid. 80, 019902(E) (2009); ibid. 81, 039903(E) (2010)]. [2] K. Pachucki and V. A. Yerokhin, Phys. Rev. Lett. 104, 070403 (2010). [3] J. S. Borbely, M. C. George, L. D. Lombardi, M. Weel, D. W. Fitzakerley, and E. A. Hessels, Phys. Rev. A 79, 0605030(R) (2009). [4] M. Smiciklas and D. Shiner, Phys. Rev. Lett. 105, 123001 (2010).

26



. . a
a b ,b

. . . , -, Max-Planck-Institut fur Quantenoptik, Garching, Germany ¨

, , . [1]. ( ). 1 eV/c2 1 MeV/c2 .

[1] S. G. Karshenboim, Phys. Rev. Lett. 104, 220406, (2010).

27



. . [1]. , , . () - . . , . . , , , .. , , , . . , . , . . . , [2, 3]. . , , . , . , .

[1] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. A 54 (1996) 3948. [2] M. G. Kozlov, Opt. Spectrosc. 95 (2003) 6. [3] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang, Phys. Rev. A 80 (2009) 012516.

28


- 1S - 2S
.. ,a,b .. ,b .. ,b . ,b . , . ,c . ,b .. b
a b

c

. .. , 53, 119991 , b , 85748 , , , 65409 ,

. , , , , . [1], 1S - 2S . , (, [2, 3]). 10-9 , . , ( ) ( ) . - 1S - 2S , 670 994 334 606(15) [4]. [2] 10 , . 2 2 rd - rp = 3.820 07(65) 2 , [2].

[1] I. Sick et al., Nucl. Phys. A637, 559 (1998). [2] A. Huber et al., Phys. Rev. Lett. 80, 468 (1998). [3] R. Pohl et al., Nature, 466, 213 (2010). [4] C.G. Parthey et al., Phys. Rev. Lett. 104, 233001 (2010).

29



. . a , . . b , . . a , . . a
b ,c

. . . , -, () , -, c Max-Planck-Institut fur Quantenoptik, Garching, Germany ¨

a

, , , . . , . 5 mµ . , . , . , . 5 mµ , .

[1] C. . , . . , . . , . . , , 92, . 1, 9-15 (2010) [2] S. G. Karshenboim, V. G. Ivanov, E. Yu. Korzinin, and V. A. Shelyuto, Phys. Rev A81, 060501(R) (2010)

30



.. . .. , , 141980, , - . ASACUSA () 4-5 2006 [1], 2006 "CODATA-06"[2]. 6-8 ·10-10 . - HD+ , (v , L) = (0, 2) (8, 3) 10-10 [3]. 2011 . m7 , - 10-10 . , , 0.2 ppb.

[1] M. Hori, et al. Phys. Rev. Lett. 96, 243401 (2006); and references therein. [2] P.J. Mohr, B.N. Taylor, and D.B. Newell, Rev. Mod. Phys. 80, 633 (2008). [3] J.C.J. Koelemeij, private communication.

31


: , ,
. 1 , . 1 , . 1,2 , . 3 , . 4,5 , . 4 . . . , - , , -, , . 1, 198504 2 , , , 188300 3 , , ,
4 5 1

, ,

, , ,

, . , 90 : . , . , . . , , . , , .

32


m e / m p
.. , 1 /. 3 · 10-9 - . , . NH3 (1,1) HC3 N J=2-1, [1, 2]. , HC3 N 0.2 . , me /mp [3].

[1] S. A. Levshakov, P. Molaro, A. V. Lapinov et al., Astron. & Astrophys. 512 (2010), A44. [2] S. A. Levshakov, A. V. Lapinov, C. Henkel et al., Astron. & Astrophys., in press (2010), astro-ph/1008.1160. [3] M. G. Kozlov, A. V. Lapinov, S. A. Levshakov. J. Phys. B, 43 (2010), 4003.

33


1s-
.. [1] 1928 , , 1s-, - . [1]: 2 g = [1 + 2 1 - (Z )2 ]. 3 1s- Z-1 . [2]. , , , Z . Z = 8 Z = 30. 1s , .

[1] G.Breit, Nature 122 (1928) 649. [2] K.W.Ford et al., Phys. Rev. 129 (1963) 194.

34



. . , . . , . . , . . |n0 k0 m0 (.. ) . , . , () , . ( ..) . h , ¯ |E0 | ( ), h < |E0 |, h > |E0 |. ¯ ¯ , . , h > |E0 | (. [1] ). ¯ : ; . s Z 100 (. . 1 Z = 50) , [2]. h /| E 0 | ¯ 1. 5 3. 0 3. 3 Z 4 s , i n a. u . - 1. 9350950449( 0) + i9. 0855444521( - 1) - 4. 3923034070( - 1) + i5. 3249887999( - 2) - 3. 5781951564( - 1) + i3. 5475112112( - 2)

1: Z = 50

[1] . . , . . , . . , 119 (2001) 45. [2] V. Yakhontov, Phys. Rev. Lett. 91 (2003) 093001.

35



.. a , ..
a a,b

b

, 443011, , . , . , 1. . .. , 443086, , . , . , 34.

(µe3 H e) 2 , , (3 H e). 2 (µe4 H e) [1-2]. 2 (µe3 H e) [3]: 2 hf exps = 4166.3(2) MHz. , , (µ e 3 H e) 2 , [1-2] . : E = - a I N sµ - b sµ se - c se I N ,
hf s

3 bc = ( b + c) + O ( , ) . 4 aa

(2)

[1, 4], b c, (1): 5 Me /Mµ ; 5 , 5 Me /Mµ ; 5 , 6 . hf s = 4166.52 [1] . , ±0.7 . " "( -20/1).

[1] S. D. Lakdawala and P. Mohr, Phys. Rev. A 24 (1981) 2224. [2] K.-N. Huang and V. W. Hughes, Phys. Rev. A 26 (1982) 2330; R. L. Drachman, J. Phys. B 16 (1983) L749; M.-K. Chen, J. Phys. B 26 (1993) 2263; A. M. Frolov, Phys. Rev. A 61 (2000) 022508. [3] M. Gladish et al., Proc. 8th Int. Conf. on Atom. Phys., ed. I. Lindgren, A. Rosen and S. Svanberg (NY, Plenum). [4] A. A. Krutov, A. P. Martynenko, Phys. Rev. A 78 (2008) 032513; arXiv:1007.1419.

36


LEPTA
.a , .b , ..b , ..b , ..b , .. b
a

. .., . b ,

LEPTA (Low Energy Particle Toroidal Accumulator). (o-Ps), , , . . ­ (1 ) ( 10-3) () 4Â10 /. , ( ) o-Ps . '08. LEPTA , 2 .

37


:
.. a , b
a

. .. , () b Huazhong University of Science and Technology (China)

G, h ¯ c, , ¯ : c - , h - , G - ( ). G . , CODATA 2007 , , 2006 , G = (6.67428 ± 0.00067) â 10-11 3 -1 -2 . 15-40 ppm, . CODATA 100 ppm. . , , , . Huazhong University of Science and Technology (China), . 2009 . , G = (6.67349 ± 0.00018) â 10-11 3 -1 -2 [1]. HUST , 20- . National Basic Research Program of China (NSFC). . 08-02-92217 NSFC 10927505.

[1] Jun Luo et al., Phys. Rev. Lett., 102, 240801 (2009).

38



. . . . . , -3 D, HT, DT -3. , , ,: H, ( 10-9 ), . , , . .. .. , 2 · 108 [, .72, . 1659-1669, 1977]. , : (1-2)/(M1·M2), 1 2 ­ . , HD 1.5 · 10-8 . DT : 5 · 10-9 . , , , . , : F(HD)/F(DH); F(TH)/F(HT) F(TD)/F(DT). , . , , , . . , .

39


H2 O
..
a a

- . .., .-

, , . . . . , , , . UGC 3789. H2 O- , . 1 H2 6 O 22.2 , . [1] , UGC 3789, NGC 3079 . , , .

[1] . . , . . , 36 (2010) 3.

40



.. a , . b , . c
a

, 394006, , b , , 89557, c , , 16802,

, . , , , . , , , . . , , . " " , B , En B R (T ) T 2 , 2.4 T = 300 K . , . ( ) . , . . , , . . nsnp(3P0 ) nsn p(3P0 ) , (n = 5) " " 2340 (n = 50) 2390 (n = 20). (n = 6) 1140 (n = 45) 1208 (n = 20). , , 400 520 /(/ 2 ) 75 132 /(/ 2 ) . n . () , .

41



.. ... SC56-1472 3 [1]. : 147 Sm/148 Sm 176 Lu/175 Lu. , . 149 Sm, , , 149 Sm . 149 Sm, , , 2 , . : | /| 5 · 10-18 , , [2].

[1] . . . ArXiv:1010.6299. [2] Yu. V. Petrov, A. I. Nazarov, M. S. Onegin, V. Yu. Petrov, and E. G. Sakhnovsky. Phys. Rev. C 74, 064610 (2006); ArXiv: hep-ph/0506186.

42


Accurate theory of the hydrogen molecule
Krzysztof Pachuckia
a

Institute of Theoretical Physics, University of Warsaw, 00-681 Warsaw Poland

The dissociation energy of the molecular hydrogen and isotopomers have recently been accurately calculated by including nonadiabatic, relativistic and quantum electrodynamics corrections. Theoretical result for H2 [1] of 36118.0695(10) cm-1 is in excellent agreement with the experimental value [2] 36118.0696(4) cm-1 . A similarly good agreement is observed for the vibrational and rotational energy differences, and also for D2 and HD molecules. This confirms good understanding of all important physical effects and a high precision of numerical computation. In solving the Schodinger equation we use exponential functions ¨ with explicitly correlated polynomial factors and obtain Born-Oppenheimer energies with about 10-15 accuracy [3]. The finite nuclear mass corrections are included perturbatively using the newly developed nonadiabatic perturbation theory [4]. The good analytic properties of exponential basis functions from one side and inclusion of finite nuclear mass effects from the other side, make possible the accurate calculations of various physical properties, like the shielding constant or the spin-spin coupling. Challenges toward high precision results for arbitrary diatomic molecules will be described.

[1] K. Piszczatowski, J. Chem. Theo. Comp. 5, 3039 (2009), [2] J. Liu et al., J. Chem. Phys. 130, 174306 (2009). [3] K. Pachucki. Phys. Rev. A 82, 032509 (2010). [4] K. Pachucki and J. Komasa, J. Chem. Phys. 130, 164113 (2009)

43


,
. . a , . .
a b b

-

, , . 620 , , (1961-2009 .), . EPM2010 , , , , - . G(t) . , (GM ) G M . , G GM , : G/G = (-2.29 ± 1.44) · 10-14 , (GM )/GM = (-2.37 ± 1.44) · 10-14 . ( ), , , G/G GM /GM . , G 5 · 10-14 (| G/G |< 5 · 10-14 -1 ). (AU ), , , GM : GM [3 -2 ] = k 2 · AU []3 /86400[]2 , k = 0.01720209895 . AU (GM ), , , , . : . 98%, , , AU > 15 . AU , AU 1 , .. .

44



. . , . , (.. ), . , , , . - (102 103 ) 10-22 -1/2 . , , . . , 510 . 10-21 . , . , . (S 5 LI GO, V S R - 1 V I RGO) . - , . , 10-12 m . , - . ,- - , .

45



.. , .. , . 878.5 ± 0.8 c [1] 885.7 ± 0.8 [2] 6.5 . [3] [4]. ­6 . 879.9 ± 0.9 [5, 6]. . 1. - (879.9 ± 0.9 ) (. 2).

. 1: . 879.9 ± 0.9 .

. 2: CKM (Cabibbo-Kobayashi-Maskawa) |Vud | gA PDG (2008) ( 1) ( 2). gA ( 3) |Vud | ( 4 7 ), 5 6 ­ |Vud | 0+ 0+ , .

[1] A. Serebrov et al., Phys. Lett. B 605 72 (2005); Phys. Rev. C 78, 035505 (2008). [2] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008). [3] W. Mampe et al., Phys. Rev. Lett. 63, 593 (1989). [4] S. Arzumanov et al., Phys. Lett. B 483, 15 (2000). [5] A.P. Serebrov, A.K. Fomin, JETP Lett. 92, 271 (2010). [6] A.P. Serebrov, A.K. Fomin, Phys. Rev. C 82, 035501 (2010).

46



. . a , . . a,b , . .
a c

c

. . . , - , , -, , . 1, 198504 b , , -, , 188300 - , , -, 65, 196140

. : [1]. 3s- , 3s - 2p - 1s . [2], [3]. [1] ""() . , [3]. . : ( ) . E1E1, E2E2, M1M1 E1M2 ns, nd ( n = 100), E1E2 E1M1 np [4]. . " " [5]

[1] L. Labzowsky, D. Solovyev and G. Plunien, Phys. Rev. A 80 (2009) 062514 [2] . . , . . . . , 55 (1968) 278 [3] V. K. Dubrovich and S. I. Grachev, Astronomy Letters 31 (2006) 359 [4] D. Solovyev, V. Dubrovich, A. Volotka, L. Labzowsky and G. Plunien, J. Phys. B 43 (2010) 175001 [5] D. Solovyev and L. Labzowsky, Phys. Rev. A 81 (2010) 062509

47


´
.., .., .., .. . .., . " " (. [1] ), P,T- (.. , P T), ´ , - . (e). , . e , , . , . YbF HfF+ , PbO, ThO PbF. , , , . (, , , ) , "" , , () . , , [1] . ,- YbF [1, 2], PbO* [1], HI+ [3], HfF+ [4] . N 09-03-01034-a.

[1] A.V.Titov, et al. Progr. Theor. Chem. Phys., 15B, 253 (2006). [2] A.V. Titov, N.S. Mosyagin, V.F. Ezhov, Phys. Rev. Lett., 77, 5346 (1996). [3] T.A.Isaev, N.S.Mosyagin, A.N. Petrov, A.V. Titov, Phys.Rev.Lett., 95, 163004 (2005). [4] A.N. Petrov, N.S. Mosyagin, A.V. Titov, Phys. Rev. A, 79, 012505 (2009).

48



..
a a

-

(A B ) (Z = ZA + ZB ) (Zcr = 173) 1g "" . , Rc . - [1, 2], , , . , Rc , . , 1 H2 , Th279+ and U183+ , 2 +(2Z -1) A (Z =88, 90, 92, 94, 96, 98), H(1s)­H+ , Ne9+ (1s)­Ne10+ , Xe53+ (1s)­Xe54+ , and U91+ (1s)­U92+ . , (c ). , , , . , U91+ (1s)­U92+ 30%.

[1] Y.B. Zeldovich and V.S. Popov, Usp. Fiz. Nauk 105 (1971) 403 [Sov. Phys. Usp. (1972) 14 673]. [2] W. Greiner, B. Muller, J. Rafelski, Quantum Electrodynamics of Strong Fields, ¨ (Springer-Verlag, Berlin, 1985).

49


.
. . . .. , , , [1] ( 109 /), , . , [2]. , , () , , ( , D < 3 â 10-26 (90% C.L.) [3], ). , . - . . [4] , , . [5]. gs gp < 10-5 .

[1] V. L. Alexeev et al., NIM A 284 (1989) 181. [2] V. V. Fedorov, V. V. Voronin., NIM B 201 (2003) 2301. [3] C. A. Baker et al., Phys. Rev. Lett. 97 (2006) 131801. [4] V. V. Fedorov et al., Nucl. Phys. A 827 (2009) 538; Phys. Lett. B 694 (2010) 22. [5] . . ., 90 (2009) 7.

50


-2000 (g-2)
. . -2 - -2 1.4 . (g-2). -3 e+ e- -2000 , (g-2) (FNAL) c 0.15 ppm.

51


C P - ?
.. a , .. a
a



, , , C P - .

52


,
. . a , . .
a b b, c

c

. . . , - , Department of Physics and Astronomy, University of Kentucky, USA

. , , (., , [1]). - ( [2]). , . . 1 - , . -

+

+

. 1: - . - E = 3 m E 3 M
F

C1 · ln

M +C m

0e

+C



,

m M ­ , EF ­ , ­ , C0e C0µ ­ , .

[1] M. I. Eides, H. Grotch and V. A. Shelyuto, Theory of Light Hydrogenic Bound States, Springer, 2007. [2] M. I. Eides, H. Grotch and V. A. Shelyuto, Phys. Rev. Lett., 103 (2009) 133003.

53


-
.. a
a

. ..

- ­ . , . [1] BES [2], -. , [3]. Belle [4]. BES, Belle , , , . [5]. 2008 . BABAR [6] , Belle, [7]. , 2 , 150 [8]. BES, 1996 PDG, 2006 , 2007 Belle, 2007 PDG, 2008 BaBar, 2008 PDG, 2010 , 2009 m , +0 18 0 25 1776.96-0..21+0..17 - 0 29 1776.99+0..26 - 0 1776.81+0..25 ± 0.15 - 23 1776. 61 ± 0. 13 ± 0. 35 1776. 84 ± 0. 17 1776. 68 ± 0. 12 ± 0. 41 1776. 82 ± 0. 16 0 1776.69+0..17 ± 0.15 - 19

[1] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33 (2006) 1. [2] J.Z. Bai et al. (BES Collab.), Phys. Rev. D 53 (1996) 20. [3] .. . (. ), 85 (2007) 429. [4] K. Belous et al. (Belle Collab.), Phys. Rev. Lett. 99 (2007) 011801. [5] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667 (2008) 1. [6] B. Aubert et al. (BABAR Collab.), Phys. Rev. D 80 (2009) 092005. [7] K. Nakamura et al. (Particle Data Group), J. Phys. G 37 (2010) 075021. [8] A.G. Shamov et al. (KEDR Collab.), Nucl. Phys. Proc. Suppl. 189 (2009) 21.

54


g
. , , 188300, , KY 40506, g [1]. , , . () . . . --.

[1] M. I. Eides and T. J. S. Martin, Phys. Rev. Lett. 105 (2010) 100402.

55


n=2
R.Engelsa , M.Westigb , K.a,c , M.a,c , F.Rathmanna , H.Paetz gen. Schieckd , G.Schuga , A.c , H.Stroehera
b

d

, , , , c , , , ,

a

, , , , [1]. - n=2 2S1/2 , 2P1/2 2P3/2 . , , g- , [2]. , FAIR GSI. , , , . , , , D21 (QED), , , . , , sin2 w [3].

[1] R. Engels et al., Rev. Sci. Instr. 74 (2003) 4607. [2] M.P. Westig et al., Eur. Phys. J. D 57 (2010) 27. [3] R.W. Dunford and R.J. Holt, J. Phys. G 34 (2007) 2099.

56






. . 1,2 , . . 1,2 , . . 1,2 , . . 1 , G. Plunien2
1

- , 2 . ,

() , (. [1]). - , . - 1/Z . . - . , - , -. - (D, F, . . 1).

(A1)

(A2)

(B )

(C )

(D )

(E 1 )

(E 2 )

(F )

. 1: , .

[1] V. M. Shabaev et al., Phys. Rev. Lett. 86, 3959 (2001)

58


. PbF
..a , ..b , ..b ..
a b

- b

2 1/2


.( ) - .(E )(2008) - .(E )(2010) .(T ) .(T )(a) .(T )(b) - .(E )(2008) .(T )(2010)
T

A (MHz) -8990 7200 ± 150 -7264 -7460 -8240 -6860 - 1200 ± 300 1460 1721

A (MHz) 10990 10300 ± 800 10147 8690 9550 9727 3000 ± 2500 2800 3073

W

d

(1025 Hz/e cm)

1.4

WP (KHz -0.72

)

1.5 1.0 1.8 1.6

-0.65 -1.25 -0.99

A2 +/2 1

2.5

-1.59

2: - Hsr . .. . (a) - (b). (T ),(E ) - , . (eEDM) PbF - ( , ). eEDM Eeff . PbF Eeff , ` ' , . eEDM 10-28 e · cm 10-29 e · cm, eEDM. Hsr . , Eeff . . PbF, , - . 09-03-01034- ( , 2.1.1/1136)

59



. . a , . . a , . . a , . . a , G. Plunien b Th. Stohlker c,d ¨
a

b

, - , 1, , -, 198504, Institut fur Theoretische Physik, TU Dresden, Mommsenstrasse 13, Dresden, D-01062, ¨ Germany c Gesel lschaft fur Schwerionenforschung, Planckstrasse 1, Darmstadt, D-64291, ¨ Germany d Physikalisches Institut, Philosophenweg 12, Heidelberg, D-69120, Germany

() , [1, 2]. () , , . [3, 4] (Z = 92) . 100 2.5 . , . , , . , , .

[1] Yu. N. Demkov, V. N. Ostrovsky and D. A. Telnov, Zh. Exp. Teor. Fiz. 86 (1984) 442 (Sov. Phys. ­ JETP 59(1984) 257). [2] Yu. N. Demkov. and V. N. Ostrovsky, J. Phys. B 34 (2001) L595. [3] A. V. Maiorova, D. A. Telnov, V. M. Shabaev, I. I. Tupitsyn, G. Plunien and Th. Stohlker, Phys. Rev. A 76 (2007) 032709. ¨ ¨ [4] A. V. Maiorova, D. A. Telnov, V. M. Shabaev, G. Plunien and Th. Stohlker, J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 245203.

60


GPS
.. a , .. b , C.G. Partheya , J. Alnisa , A. Beyera , Th. Udema , R. Holzwartha , D. Roverac , M. Abgrallc , Ph. Laurentc , T.W. Hanscha ¨
b

MPQ, Max Planck Institute of Quantum Optics, 85748 Garching, Germany . . . , 31, 119991 , c BNM-SYRTE, Observatoire de Paris, 61 Avenue de l'Observatoire, 75014 Paris, France

a

, , , . , , . , 10-15 . , , . , , . , 1s-2s [1], , GPS. , GPS-, , . . GPS FOM, . 5 10-15 .

[1] M. Fischer, et al., Phys. Rev. Lett. 92 (2004) 230802.

61


:
.. , .. ­ , , .. , ( . [1]). , . [2], . ­ . , .

[1] .., 178, 1220 (2008) [2] A.G. Fainstein, N.L. Manakov and A.A. Nekipelov, J. Phys. B.: At. Mol. Opt. Phys. 23, 559 (1990)

62



..a,b , ..a , ..a , ..
b a

-

a

() . 10-28 - 10-30 e · cm, e ­ . . , c . c " " . ThO [1] (Yale, Harvard, Maryland), Pb [2]. . (JILA, , ) . HfF+ [3]. ( , , g-, .) , . (Eeff ) , . Eeff , , Eeff . , Eeff , . . 09-03-01034-. ( , 2.1.1/1136)

[1] A.C.Vutha et al., J. Phys. B 43 (2010) 074007. [2] S.Bickman et al., Phys. Rev. A 80 (2009) 023418. [3] R.Stutz and E.Cornell, Bull.Amer.Phys.Soc. 49 (2004) 76.

63



. . , . . . .. , - () 1980 . , 18 01.01.90 . 1991 . 14-91, . , , , 01.01.90 2 · 10-8 . , - 1,1, . (NRC) 3, 6 â 1015 -2 . i =2 7 . , (1-2, 3-4, 1-4, 3-2) , 1 . , 2-3 â 10-8 . 1 . , 5 · 10-9 .

[1] .., .., .., .., .. , , 1990, 12, 3-4.

64



. . a , . . , - , 198504 -, , 1. , [1, 2]. . , . M 1- . nj l n j l (M 1) l (Z ) Wn j l; nj l = Dnj n me (Z )10 ( ), me - , - , Z - . n n ns1/2 - n s1/2 np1/2 - n p1/2 M 1- [3]. . .
a

[1] V. M. Shabaev, J.Phys. B 24, (1991) 4479. [2] V. M. Shabaev, Precision Physics of Simple Atomic Systems (Springer, Berlin) (2003) 97; E-print/physics/0211087 (2002) [3] . . , . . , . 108 (2010), 713.

65


P,T- Eu0.5 Ba0.5 TiO3 : Eu++
..a , ..a , ..
a ab

, ..

a

. .., . , . b - , , .-

" " (.. , . [1] ) - (e). P,T- , . 60-70 , e , , . Eef f , e, Eef f e , . Eef f , "" e . Eu0.5 Ba0.5 TiO (EBTO) [2]. ( e) Eef f EBTO, .. ( ) , . Eef f EBTO ­ Eu++ . , , , 4s,4p 4d - . 09-03-01034-. . ( , 2.1.1/1136).

3

[1] J.S.M.Ginges and V.V.Flambaum, Phys. Rep. 397, 63 (2004) [2] A. O. Sushkov, S. Eckel, S. K. Lamoreaux, Phys. Rev. A 81, 022104 (2010)

66



.. , , , , [1]: , 1/(1, 60217653 10 19) . [e] = (1 )·(1 ) = (1 ·) = 1 () dim Q = (dim I)â(dim t) = IT. . : . dim Q = Q. Q = N e , N = 1, 2, 3..., : , 1/(1,602 176 53 10 19) , 1 , (299 792 458)2 â 107 . ( Q, ) I = Q/t. , ! , , , , I Q-1 . , .. LMTQ, L T , M Q , , .

[1] I. . Mills et al., Metrologia 43 (2006) 227.

67


h e
.. , , , [1] , , h, NA . , [2] , " c, h, e ?". [1], h , µ0 . , 0 µ0 , , , k0 = 10-7 · {c}2 H · 2 /(A2 · c2 ), {c}2 = 299 792 458 ­ [3]. 0 µ0 ", ", . , h , .. , , h, c, 0 . . h, , .

[1] I. M. Mills et al, Metrologia 43 (2006) 227. [2] . . , 1 (2007) 3. [3] . . , 2 (2007) 48.

68



..a , ..a,b , ..
a a,b

- . .. b " ",

(), , , , , 80- - 90- , (-1, COBE, BOOMERANG, MAXIMA .). ( WMAP Planck) LSS , " "(.. precision cosmology, .. ). . .

69


n=2
R.Engelsa , M.Westigb , K.a,c , M.a,c , F.Rathmanna , H.Paetz gen. Schieckd , G.Schuga , A.c , H.Stroehera
b

d

, , , , c , , , ,

a

, , , , [1]. - n=2 2S1/2 , 2P1/2 2P3/2 . , , g- , [2]. , FAIR GSI. , , , . , , , D21 (QED), , , . , , sin2 w [3].

[1] R. Engels et al., Rev. Sci. Instr. 74 (2003) 4607. [2] M.P. Westig et al., Eur. Phys. J. D 57 (2010) 27. [3] R.W. Dunford and R.J. Holt, J. Phys. G 34 (2007) 2099.

70


Spherical Neutral Detector for exp eriments at VEPP-2000 e+ e- collider?
M.N. Achasov, P.M. Astigeevich, V.M. Aulchenko, A.Yu. Barnyakov, K.I. Beloborodov, A.V. Berdyugin, V.E. Blinov, A.G. Bogdanchikov, A.A. Botov, D.A. Bukin, V.B. Golubev, K.A. Grevtsov, T.V. Dimova, V.P. Druzhinin, L.V. Kardapoltsev, A.G. Kharlamov, D.P. Kovrizhin, A.A. Korol, S.V. Koshuba, E.A. Kravchenko, K.A. Martin, A.E.Obrazovsky, A.P. Onuchin, E.V. Pakhtusova, S.I. Serednyakov, Z.K. Silagadze, K.Yu. Skovpen, A.N. Skrinsky, I.K. Surin, Yu.A. Tikhonov, Yu. V. Usov, Yu.M. Shatunov, D.A.Shtol, A.N. Shukaev, A.V.Vasiljev, E.A. Vlasenko Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia Novosibirsk State University, 630090, Novosibirsk, Russia Spherical Neutral Detector (SND) is a general purpose non-magnetic detector for experiments at VEPP-2000 e+ e- collider in Novosibirsk in the energy range 2E = 0.4 2.0 GeV. Charged particle track coordinates are measured using drift and proportional chambers placed in common gas volume. Particle identification is performed using energy deposition in drift chamber at low particle momenta p 300 MeV and aerogel threshold counters at high particle momenta p 300 MeV. Photon energies are measured using 3-layer spherical electromagnetic calorimeter. Muons penetrating the detector and cosmic background muons are detected by the muon system based on proportional tubes and plastic scintillator counters. At present the detector is operating at VEPP-2000.

71


-3
. . + , . . + , . . + , . M. + , . . + , A. E. + , A. . + , . A. + , . . + , A. A. + , . . + , A. . + , . . + . . + , . . + , . . + , A. . + , . . + , . A. + , . . + , M. A. + , . . + , A. . + , . . + , A. A. + , . . + , . M. + , A. . + , A. . + , . . , E. . + , . A. + , . . + , . . + , . A. + , . . + , . . + , . . + ,
+

Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia Novosibirsk State University, 630090, Novosibirsk, Russia Boston University, Boston, MA 02215, USA Weizmann Istitute of Science, 76100, Rehovot, Israel

-3 - , , -2000. : , . , , Z-. R- ( 100µ), - ( 2mm). 1.5 0.1X0 . : (LXe) 7X0 . CsI ( 8X0 ) LXe 2 - 3%. -3 e+ e- -2000 .

72