Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.cplire.ru/html/plasma/index.html
Äàòà èçìåíåíèÿ: Mon Mar 21 11:32:04 2011
Äàòà èíäåêñèðîâàíèÿ: Mon Oct 1 23:02:36 2012
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: meteoroid
Microwave Plasmachemistry for Photonics. IRE RAS.

Home

Institute of Radio-engineering and Electronics of RAS

General Information
Research Activities
Research Divisions
News, seminars
Contact information
Journal of Radio Electronics
Physics in Internet


Microwave Plasmachemistry for Photonics 

The group is headed by Prof. Konstantin Golant, Doctor of Physics and Mathematics, laureate of the Russian Federation State Prize

The group appeared in 2008 as a result of transfer of key employees of the Plasmachemical Laboratory at Fiber Optics Research Centre RAS to Kotel’nikov Institute of Radio Engineering and Electronics RAS. 

The group focuses on research and development of technology aimed at fabrication of lightguide structures to serve a wide scope of photonics needs. The technology we apply comes from silica based optical materials synthesis from a gas phase by a plasmachemical deposition in a microwave-induced discharge. Most efficiently the technology manifested itself when obtaining such lightguide structures as:

1.      Optical fibers specially designed for sensors

2.      Optical fibers resistant to ionising irradiation

3.      Activated optical fibers for high-power fiber lasers and amplifiers

4.      Photosensitive lightguides

5.      Waveguides with multilayer light-reflecting cladding

6.      Activated film structures for waveguide lasers and amplifiers

The heart of applied plasma chemical technology is metals’ halogenides-to-oxides transformation by means of reactions brought about by electron excitation in oxidizing surface discharge plasma (SPCVD process). Owing to peculiarities of excitation and sustaining of quasi-stationary surface microwave-induced discharge, SPCVD technology allows one to deposit dense oxides layers of high optical quality at high deposition rate and well controlled composition. Thus, at the deposition rate of the layer exceeding 2 micron per minute on a surface of up to 200 cm2, the technology we apply permits one to regulate film’s composition at thickness variations down to 100 nm.  

SPCVD enables to form radial refractive index profile of glass in the course of fiber preforms synthesis as well as to dope glass with almost any activator in a wide range of concentrations at the stage of deposition from the gas phase. In addition to it SPCVD offers a unique opportunity of direct deposition of high-transparency film structures on a substrate without melting of material, which is of key importance for integral optics. 

Plasma chemistry opens up new opportunities for synthesis of new optical materials, including the ones complicated or impossible to obtain by means of thermodynamic equilibrium processes.  A vivid example is a low loss optical fiber, where a radial refractive index is formed by nitrogen doping of silica.

 Our group disposes a unique plasma chemical SPCVD set up and other equipment necessary for a wide range of experimental research of optical materials and fibers.

 The activity we focus on is reflected in the list of recent selected publications presented below.

 We cooperate closely with other groups and laboratories of the Institute and its branches.

 
List of main publications: 

2010

  1.  Valery Filippov, Juho Kerttula,Yuri Chamorovskii, Konstantin Golant and Oleg G. Okhotnikov, “Highly efficient 750 W tapered double-clad ytterbium fibre laser”, Optics Express, Vol. 18 Issue 12, pp.12499-12512, 2010

  2. Juho Kerttula, Valery Filippov, Yuri Chamorovskii, Konstantin Golant, and Oleg G. Okhotnikov, “Actively Q-switched 1.6-mJ tapered double-clad ytterbium-doped fibre laser”, Optics Express, Vol. 18, Issue 18, pp. 18543–18549, 2010

  3.  E. J. R.  Kelleher, J. C. Travers, K. M. Golant, S. V. Popov, and J. R. Taylor, “Narrow Linewidth Bismuth-Doped All-Fibre Ring Laser”, IEEE Photonics Technology Letters, Vol. 22, No. 11, pp.793-795, 2010

  4.  E.J.R. Kelleher, J.C. Travers, Z. Sun, A.C. FerrariK.M. Golant,  S.V. Popov, and J.R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes”, Laser Phys. Lett. 7, No. 11, pp. 790–794, 2010

2009

1.    V. V. Voloshin, I. L. Vorobev, G. A. Ivanov, A. O. Kolosovskii, Yu. K. Chamorovskii, O. V. Butov, and K. M. GolantRadiation Resistant Optical Fiber with a High Birefringence”, Journal of Communications Technology and Electronics, Vol. 54, No. 7, pp. 847–851, 2009.

2.    A.N. Trukhin, K.M. Golant, “Peculiarities of photoluminescence excited by 157 nm wavelength F2 excimer laser in fused and unfused silicon dioxide”, Journal of Non-Crystalline Solids,  vol. 355,  No. 34, p.1719–1725, 2009

3.    A.V. Lanin, A.V. Kholodkov, O.V. Butov, K.M. Golant, “Photoinduced changes in UV absorption spectra of nitrogen-doped silica caused by exposure to ArF excimer laser”, Journal of Non-Crystalline Solids, vol. 355,  No. 18, p.1075-1079, 2009

2008

1.   Igor A.Bufetov, Konstantin M.Golant, Sergey V.Firstov, Artem V.Kholodkov, Alexey V.Shubin, Evgeny M.Dianov, “Bismuth activated alumosilicate optical fibers fabricated by surface-plasma chemical vapor deposition technology” Applied Optics, Vol. 47, Issue: 27, pp. 4940-4944, 2008

2.   Benoit Brichard, Oleg V.Butov, Konstantin M.Golant, Alberto Fernandez Fernandez, ‘Gamma radiation-induced refractive index change in Ge- and N-doped silica”, Journal of Applied Physics, Vol. 103,  Issue: 5  Article Number: 054905, 2008

3.   Valery Filippov, Yuri Chamorovskii, Juho Kerttula, Artem Kholodkov, Oleg G. Okhotnikov, “Single-mode 212 W tapered fiber laser pumped by a low-brightness source”, Optics Letters    Vol. 33,  Issue: 13, pp. 1416-1418, 2008

4.   V. Filippov, Yu. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, O. G. Okhotnikov, “Double clad tapered fiber for high power applications”, Optics Express,   Vol. 16,   Issue: 3, pp. 1929-1944, 2008

5.   A. N. Trukhin, K. M. Golant, Y. Maksimov, M. Kink, R. Kink, “Recombination luminescence of oxygen-deficient centers in silica”, Journal of Non-Crystalline Solids,  Vol. 354,   Issue: 5-9, pp. 244-248, 2008   

2007

1.    Alexey V. Lanin, Oleg V. Butov, and Konstantin M. Golant, “H2 impact on Bragg gratings written in N-doped silica-core fiber”, Optics Express, Vol. 15, Issue 19, pp. 12374-12379, 2007

2.    K. M. Golant, S. V. Lavrishchev, A. V. Popov, I. A. Artyukov, R. M. Feshchenko, A. N. Mitrofanov, A. V. Vinogradov, “Fabrication of x-ray zone plates by surface-plasma chemical vapor deposition”, Applied Optics,  Vol. 46,  Issue: 23, pp. 5964-5966,  2007

3.    A. N. Trukhin, K. M. Golant, “Absorption and luminescence in amorphous silica synthesized by low-pressure plasmachemical technology”, Journal of Non-Crystalline Solids,  Vol. 353,   Issue: 5-7, pp. 530-536, 2007

 2006

1.   A. V. Kholodkov, K. M. Golant, L. D. Iskhakova, ” Features of Er3+ luminescence in fluorine-doped amorphous silicon dioxide fabricated by low-temperature plasma CVD”,  Journal of Non-Crystalline Solids,  Vol. 352,   Issue: 36-37, pp. 3808-3814, 2006

2.   Alexey V. Lanin, Oleg V. Butov, and Konstantin M. Golant, “Response of in-fiber Bragg gratings to hydrogen loading and subsequent heat treatment in H2 ambience”, Applied Optics,  Vol. 45,  Issue: 23, pp. 5800-5807,  2006

3.   O. V. Butov, E. M. Dianov, K. M. Golant, ” Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures”, Measurement Science & Technology    Vol. 17,    Issue: 5,  pp. 975-979,  2006

4.   E. I. Golant, K. M. Golant, “New method for calculating the spectra and radiation losses of leaky waves in multilayer optical waveguides”, Technical Physics, Vol. 51, Issue: 8, pp. 1060-1068, 2006

 2005

1.    A. V. Kholodkov, K. M. Golant, “Er3+ ions luminescence in non-fused silicate glasses fabricated by SPCVD”, Optical Materials, Vol. 27,  Issue: 6, pp.: 1178-1186,  2005

2.    A. V. Kholodkov, K. M. Golant, “Er3+ ion photoluminescence in silicate glasses obtained by plasma-chemical deposition in a low-pressure microwave discharge”, Technical Physics, Vol. 50, Issue: 6, pp. 719-726, 2005

© IRE RAS   1996-2011