Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.cplire.ru/html/lab234/pubs/2014_05.pdf
Дата изменения: Mon Mar 21 06:11:21 2016
Дата индексирования: Sun Apr 10 06:41:06 2016
Кодировка:

Поисковые слова: п п п п п п п п п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п р п
, N1, 2014


. 1 , . 2, . 3, .
1 3

. .. 2 . .. 3 , 9 2013 .

. , , . 0.06 3 2-15 .

2.7 , , 0.3*109 /, 2*10-4 /1/2. , , 0.6. , , . =2*1018

/1/2,

, 0.1 , 1.6 , 1 350 , 100 , 5*10
20 -

3.

. 10-100 10-100 , .

29 2013

1


, N1, 2014

: , , , . Abstract. Integrated structures comprising cold electron bolometers and twin-slot antennas have been studied in the temperature range 0.06-3 K. Dynamic resistance ratio and optical response was measured for 2-15 K black body radiation temperature. For radiation temperature of 2.7 K, which corresponds to cosmic microwave radiation temperature, the optical responsivity was around 0.3*109 V/W and temperature sensitivity of 2*10-4 /Hz1/2. Ratio of irradiated and measured power corresponds to matching efficiency of 0.6. For obtaining of Noise Equivalent Power NEP=2*10
-18

W/Hz1/2, that is required for many space-borne experiments, the temperature of sample should be below 0.1 , background radiation temperature below 1.6 , signal power below 1 fW at signal frequency 350 GHz, bandwidth 100 GHz and absorber volume 5*10
-20

m3. Such requirements are not realistic for practical cases and to

avoid saturation of receiver the arrays of bolometers should be used instead of a single bolometer. For measurements of signal in the range of 10-100 pW the array should consist of over 10-100 bolometers. Key words: superconducting bolometers, noise equivalent power, responsivity, background radiation temperature. () -- (), . . 1

, , . . .

, ,
2


, N1, 2014

[1]. [2] - , [3,4], . [5], .

1.

2. . .
3


, N1, 2014

(. 2) . , [6] 0.5F=0.5*3.5*0.856=1.5 , BOOMERANG F=3.5 0.856 . [7], 0.06-3 K.

:



(1 )

(. 3) 12000, 215 K .

12000

290

10000

RR Te

280

Electron temperature, mK

270

Resistance ratio, Rd/Rn

8000

260 250

6000 240 4000 230 220 210 0 50 100 150 200 250 300

2000

Phonon temperature, mK

3. (RR) (Te) .
4


, N1, 2014

350 50 . :


(2 ) 350 , df

h , f

0

50 , k , TR . , . 4. , (1) .

300

3,0

250

2,5

Response, µV, Response/Pover, µV/pW

200

2,0

150

1,5

100

1,0

50

0,5

0 2 4 6 8

0,0

T

black body

,K

4. (), () / () .
5

Radiated power, pW


, N1, 2014



-







, (3) Pep=(Te5-Tp5) =2*109 W/m-3K-5 , =5*10
-20

(3 ) 3 .

0.6 . . 5. , . [8]

() Sv=dV/dP=k/[eTe4], (4 )

100 Sd(100 K)=1010 / 300 Sd(300 K)=1.1*108 /.

1E10

RESPexp RESPcalc
1E9

R178DSA2

Response, V/W

1E8

1E7

1000000 0 2 4 6 8 10 12 14 16 18 20 22

Radiation temperature, K

5. RESPcalc RESPexp . :
6














, N1, 2014

Sv=k/[e()0.2P0.8] , =10 10 /1/2.
-18

(5 ) /1/2

Sv=3*108 / 100 3.5*107 / 1 .

3* 10
-19

/

1/2

[9],

10 , . ­ , NEPphot=(2*P*hf)1/2. (6 )

, . 1 /1/2, . 1. 5 38 BOOMERANG OLIMPO. 1.
, / Vn
amp , 1/2

100 K 0 .0 1 10 10
/2 1/2 10 -19

300 K 0 .0 1 10 10
8 -17

100 0.1 3*10 3*10
8 -18

200 1 3 .5 * 1 0 2 .9 * 1 0
7 -17

300 5 10 10
7 -17

300 38 2*10 10
-16 6

/

=1 /1
,

Vn
amp

/

10

-18

10

-16

3*10

-17

2 .9 * 1 0

-16

10

-16

10

-15

=10
1/2 -19 -19 -18 -17 -17 -16

/ /



,

2*10

2*10

6 .5 * 1 0

2*10

4 .6 * 1 0

1 .3 * 1 0

1/2

7


, N1, 2014

2.7 ,

(Noise Equivalent Temperature Difference), dV/dTrad=50 /K (. 4) vn=10 /1/2, Tn=vn/(dV/dTrad)=2*10-4 /1/2. Pbg , , .

. , (5), , (3) , .. .

, ,

, . 280 , 300 , 0.07 . 1 14 , 10 , 143. , . 0.1 .

, [2] c 10 . ,
8


, N1, 2014

, , , 10 . 10

, ,

.

. , . .

11G34.31.0029, 11-02-12145---2011, , .

1. L.Kuzmin, I.Devyatov, D.Golubev, Cold-electron bolometer with electronic microrefrigeration and the general noise analysis, Proc. of SPIE, v. 3465, pp. 193199. 2. M. Tarasov, L. Kuzmin, V. Edelman, S. Mahashabde, P. de Bernardis, Optical Response of a Cold-Electron Bolometer Array Integrated with a 345 GHz CrossSlot Antenna, IEEE Trans.Appl.Supercond. vol.21, No.6, December 2011, pp. 3635-3639. 3. J.Zmuidzinas, H.G.LeDuc, Quasi-optical slot antenna SIS mixers, IEEE Trans. Mictowave Theory and Techniques, v. 40, No 9, 1797-1804 (1992).

9


, N1, 2014

4. T.M.Weller, L.P.B.Katehi, G.M.Rebeiz, Single and double folded-slot antennas on semi-infinite substrates, IEEE Trans. Antennas and Propagation, v. 43, No 12, 1423-1428 (1995). 5. P.Day, H.G.Leduc, C.D.Dowell, R.A.Lee, A.Turner, J.Zmuidzinas, Distributed antenna-coupled TES for FIR detector arrays, J. Low Temp. Phys., v. 151, pp. 477-482 (2008). 6. M.J.Griffin, J.J.Bock, W.K.Gear, Relative performance of filled and feedhorncoupled focal-plane architectures, Appl. Optics, vol. 41, No 31, 6543-6554 (2002). 7. V.S.Edelman, G.V.Yakopov, A dilution microcryostat cooled by a refrigerator with a pulse tube, Instr. and Exp. Techn., Vol. 56, No. 5, pp. 613-615 (2013). 8. 5. D.Golubev, L.Kuzmin, Nonequillibrium theory of a hot-electron bolometer with normal-metal-insulator-superconductor tunnel junction, J.Appl. Phys., vol. 89, No 11, 6464-6472 (2001) 9. B.S.Karasik, A.V.Sergeev, D.E.Prober, Nanobolometers for THz photon detection, IEEE Trans. on THz Sci. and Technol., (2011).

10