Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.cplire.ru/html/lab234/pubs/2004-03.pdf
Äàòà èçìåíåíèÿ: Mon Feb 28 21:08:21 2005
Äàòà èíäåêñèðîâàíèÿ: Tue Oct 2 07:34:22 2012
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: m 11
Status of the SIR Program for SR&T (Extension to 1 THz)
V.P. Koshelets, Institute of Radio Engineering and Electronics

List of participants
P.N. Dmitriev, A.B. Ermakov, L.V. Filippenko, N.N. Iosad, I.L. Lapitskaya, G.V. Prokopenko, S.V. Shitov, A.S. Sobolev, M.Yu. Torgashin
Institute of Radio Engineering and Electronics (IREE), Moscow, Russia in collaboration with National Institute for Space Research (SRON), the Netherlands and National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan


Status of the SIR Program for SR&T (Extension to 1 THz)
Outline

· · · · · · · ·
08 April

IREE Technological Facilities Tunnel Junctions with AlN barriers Sub-micron SIS Junctions Tunnel Junctions with NbN electrodes Test of the FFO with NbN electrodes Cryogenic PLL; SQA Towards 1 THz SIR Conclusion
Towards 1 THz SIR 2


IREE Technological Facilities

08 April

Towards 1 THz SIR

3


Cross-section of an Integrated Superconducting Microcircuit
M1b(Nb), d =100 nm R1(Mo), d = 100 nm M3(Nb), d = 450 nm I2(SiO2), d = 400 nm

AlOx, d = 1nm

Crosssectio n

M2(Nb), d = 350 nm I1(SiO2), d =300 nm M1a(Nb), d = 250 nm I0(SiO2), d =220 nm M0 (Nb), d = 200 nm Si substrate
08 April Towards 1 THz SIR 4


SQUID Sensor

08 April

Towards 1 THz SIR

5


10 SIS Array (8 µm2; Jc = 5 kA*cm2)

08 April

Towards 1 THz SIR

6


100 SIS Array (8 µm2; Jc = 5 kA*cm2)

08 April

Towards 1 THz SIR

7


1000 SIS Array (8 µm2; Jc = 5 kA*cm2)

08 April

Towards 1 THz SIR

8


Quality vs Jc for Nb-AlOx-Nb Technology
Rn * S , * µ
70 30 20
2

13

10

35 30 25
Rj/Rn
S ta tic O x id a tio n D yn a m ic O x id atio n

20 15 10 5 0 2 4 6 8 10 12 14
2

16

18

20

22

Jc, kA/c m
08 April Towards 1 THz SIR

9


Diagram of the nitridation process

Substrate holder 140 mm
e N+ N2+
-

N20

Substrate Plasma region Vacuum chamber

Magnetron

Matching unit

RFGenerator 13,56 MHz
10

08 April

Towards 1 THz SIR


Nb-AlN-Nb Junctions for THz SIR: Jc = 8 and 19 kA/cm2
0,5
1,25

0,4

RnA = 24 µm J = 8 kA/cm Rj/Rn = 20
2

2

1,00

RnA = 10 µm J = 19 kA/cm Rj/Rn = 16
2

2

Current, mA

Current, mA

0,3

0,75

0,2

0,50

0,1

0,25

0,0 0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0,00 0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Voltage, mV

Voltage, mV

08 April

Towards 1 THz SIR

11


Nb-AlN-Nb Junctions for THz SIR: Jc = 70 and 210 kA/cm2
4

10

3
Current, mA

RnA = 2.7 µm J = 70 kA/cm Rj/Rn = 12
2

2

8

RnA = 0.9 µm J = 210 kA/cm Rj/Rn = 8
2

2

2

Current, mA
2,0 2,5 3,0 3,5 4,0

6

4

1

2

0 0,0

0,5

1,0

1,5

0 0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Voltage, mV

Voltage, mV

08 April

Towards 1 THz SIR

12


Rn*S of Nb-AlN-Nb SIS vs nitridation parameters
50
90 80 70 60 W W W W

40

RnS, µm

30

2

20

10

0

100

150

200
Ti m e , s e c

250

3 00

08 April

Towards 1 THz SIR

13


Quality vs Jc (AlOx and AlN barriers)
Rn*S, *µ
200 40 35 30 25 Rj/Rn 20 15 10 5 0 1 10 Jc, kA/cm
08 April Towards 1 THz SIR
2

2

20

2

AlOx barrier; Static Oxidation AlOx barrier; Dynamic Oxidation AlN barrier; Al Nitridization

100

14


Electron Beam Lithography (with MSU)

08 April

Towards 1 THz SIR

15


Sub-micron Nb-AlN-Nb junction: S = 0.03 µ2; Jc = 21 kA/cm2; Rj/Rn = 14

EBL + CMP

08 April

Towards 1 THz SIR

16


Nb-AlN-NbN Junctions
0,15

0,10

Current, mA

Nb-AlN-NbN 2 RnS=100 W*m Vg = 3.55 mV Rj/Rn = 32

0,05

0,00

0

1

2

3

4

5

6

Voltage, mV
08 April Towards 1 THz SIR 17


A THz SIS Mixer incorporated in NbN microstrip line

NbN

NbN Al/AlNx Nb SiO2 NbN Al2O3 Si

08 April

Towards 1 THz SIR

18


NbN-MgO-NbN SIS junctions NbN - 300 = 160 µcm Tc 15.7 ; (300/ 20) 0.9
1000
NbN

900 800 700
RnA , µm2

240 W 120 W 60 W

MgO NbN

600 500 400 300 200 100 0 8 9 10 11 12
D gO, å M

SiO2

Al2O3

Si

13

14

15

08 April

Towards 1 THz SIR

19


NbN-MgO-NbN SIS junctions

08 April

Towards 1 THz SIR

20


NbN-MgO-NbN SIS junctions
1,2 Normalized Current, a.u. 1,0 0,8 0,6 0,4 0,2 0,0 RnS = 3500 µm ; Vg = 4.57 mV; Rj/Rn = 15 RnS = 130 µm ; Vg = 4.71 mV; Rj/Rn = 8.3 RnS = 20 µm ; Vg = 4.27 mV; Rj/Rn = 3.2
2 2 2

0

1

2

3

4

5

6

7
21

Voltage, mV
08 April Towards 1 THz SIR


IVCs of the Nb-AlN-NbN SIS pumped by FFO

f f f f

FFO FFO FFO FFO

= = = =

400 400 516 676

GHz; Ib=15mA GHz; Ib=18mA GHz GHz

08 April

Towards 1 THz SIR

22


IVCs of the Nb-AlN-NbN FFO, measured at different magnetic fields

08 April

Towards 1 THz SIR

23


Experimental FFO power coupling to SIS

NbN

Nb

08 April

Towards 1 THz SIR

24


Calculations of the FFO power coupling ------ Nb electrode ------ NbN electrode
TEST_DCB = 0
0 2

FFO POWER COUPLING TO 1JJ-DETECTOR 1 -

HD11-1JJ_HM d1SiO2 = 20 0 nm,
Coupling (dB)

4

d2SiO2 = 140 nm, = 4.2, L1 = 85 nm L2 = 300 nm RnS = 10, C = 0.09 pF/um2 S = 2.0 mkm2 Ltuner = 5 mkm WEFFO=1.0 mkm Widle = 4 mkm
08 April

6
CdBoutu -4

8

10

12

14

16

18

20

0

100

200

300

400

500

600

700

800

fu Frequency (GHz)

Towards 1 THz SIR

25


Nb-AlN-NbN circuit ­ optimized design
TEST_DCB = 0
0 2 4 6 Coupling (dB) CdBoutu -4 8 10 12 14 16

FFO POWER COUPLING TO 1JJ-DETECTOR 1 -

HD11-1JJ_HM (without BPF and DCB2) d1SiO2 = 2 80 nm, d2SiO2 = 140 nm, = 4.2, L1 = 85 nm L2 = 85 nm RnS = 40, C = 0.082 pF/um S = 2.0 mkm2

2

18 20 0 100 200 300 400 500 600 700 800

Ltuner = 5 mkm WEFFO=1.0 mkm Widle = 4 mkm
08 April

fu Frequency (GHz)

Towards 1 THz SIR

26


Spectra of the Nb-AlN-NbN FFO at 597 GHz, f = 3.5 MHz; SR = 70%

08 April

Towards 1 THz SIR

27


Spectrum of the PL Nb-AlN-NbN FFO (­90 dBc)

08 April

Towards 1 THz SIR

28


Concept of cryogenic PLL
T = 4.2 K CL SIS FFO SQA or InP Ref Synthesizer
08 April Towards 1 THz SIR 29

HM

PD (SIS) LPF SQA or InP

SIR chip 20 GHz


Photo of SQA test unit with two-stage SQA chip

08 April

Towards 1 THz SIR

30


Gain and noise of SQA at 4.2 K (balanced and non-balanced)

Gain >10 dB Tn 1 K @ 4 GHz at 4.2 K 3-dB BW 10%
08 April Towards 1 THz SIR 31


Spectral Ratio vs FFO LW for different PLLBW
1,0 0,9 Spectral Ratio 0,8 0,7 0,6 0,5
PLL regulation bandwidth PLLBW =5 MHz PLLBW=15 MHz PLLBW=50 MHz

20

40

60

80

100

Free running FFO linewidth (3 dB), MHz
08 April Towards 1 THz SIR 32


1 THz SIS-mixer (SRON - IREE) 1 THz Nb-AlOx-Nb SIS-mixer with Double-dipole Antenna and NbTiN/SiO2/Al Tuning Microstrip
08 April Towards 1 THz SIR 33


1 THz SIS-mixer with NbTiN/Al Tuner (SRON - IREE)
700

Receiver Noise Temperature (K)

Absorption line H2O @ 990 GHz
600

500

Corrected for 15 µm beamsplitter Uncorrected for 6 µm beamsplitter Tbath= 2 K

400

300

200 850 900 950 1000
May 20, 2000 by S.V.Shitov

Frequency (GHz)
08 April Towards 1 THz SIR

34


All NbN SIR: FTS (AIST ­ IREE - SRON)

08 April

Towards 1 THz SIR

35


All NbN SIR: LW (AIST ­ IREE - SRON)
-36 -38
IF output power (dBm)

-40 -42 -44 -46 -48 -50 100

200

300

400

500

600

700

Down-converted frequency of NbN-AlN-NbN FFO (MHz)

08 April

Towards 1 THz SIR

36


THz SIR ­ Possible Implementations FFO
· NbN-MgO/(AlN)-NbN Vg up to 6 mV (1.5 THz) · NbN-MgO/(AlN)-NbN

Mixer
NbN-MgO/(AlN)-NbN PLO 2 ( 1 µW at 1 THz) Phonon Cooled NbN HEB PLO < 0.1 µW ( independent) TR 700 K at 1.5 THz Phonon Cooled NbN HEB

· Stacked NbN-MgO-NbN frequency up to 3 THz
08 April

Towards 1 THz SIR

37


Conclusion
· · · · · · High quality Nb-AlOx-Nb SIS; Jc up to 20 kA/cm2 AlN barriers; Jc up to 200 kA/cm2 Sub-micron SIS (EBL + CMP); S = 0.03 µ2 SIS junctions with NbN electrode; Vg = 3.6 mV PL Nb-AlN-NbN FFO for TELIS ? NbN- MgO(AlN)-NbN junctions and circuits ­ additional study required (tech + calc + exp) · ?? Integration of a FFO and NbN HEB ?? · A special project to develop an array of PL SIRs is required
08 April Towards 1 THz SIR 38