Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.cosmos.ru/mirrors/stern/stargaze/StarFAQ3.htm
Дата изменения: Unknown
Дата индексирования: Sat Dec 22 09:45:13 2007
Кодировка:

Поисковые слова: comet tail
"Get a Straight Answer" Site Map

Get a Straight Answer

Please note!

    Listed below are questions submitted by users of "From Stargazers to Starships" and the answers given to them. This is just a selection--of the many questions that arrive, only a few are listed. The ones included below are either of the sort that keeps coming up again and again, or else the answers make a special point, often going into details which might interest many users.

For an index file listing questions by topic, click here.


Items covered:

  1. About asteroids hitting Earth.
  2. The swirling of water in a draining tub.
  3. Dispensing water at zero-g.
  4. Robert Goddard and World War II.
  5. Asymmetry of the Moon's orbit.
  6. Measuring distance from the Sun.
  7. Who owns the Moon?
  8. Acceleration of a rocket.
  9. Rebounding ping pong balls (re. #35)
  10. Rebounding ping pong balls and gravity-assist
  11. Why don't we feel the Sun's gravity pull?
  12. How hot are red, white and blue (etc.) stars?
  13. How does the solar wind move?
  14. The shape of the orbit of Mars
  15. What if the Earth's axis were tilted 90° to the ecliptic?

  16. Mars and Venus
  17. Where is the boundary between summer and winter?
  18. The Ozone Hole
  19. What keeps the Sun from blowing up?
  20. Those glorious Southern Skies!
  21. Should we fear big solar outbursts?
  22. Planetary line-up and the sunspot cycle
  23. What are comet tails made of?
  24. If light speed sets the limit, why fly into space?
  25. Does precession mis-align ancient monuments?
  26. Why does the Earth rotate? Why is it a sphere?
  27. What's so hard about reaching the Sun?

  28. Where does space begin?
  29. Gravity at the Earth's Center
  30. Radiation hazard in space (3 queries)
  31. "Danger, falling satellites"?
  32. The Lagrangian L3 point
  33. Distance to the Horizon on an Asteroid
  34. Overtaking Planets
  35. Falling Towards the Sun
  36. The Polar Bear
  37. Are the Sun's Rays Parallel?
  38. More thrust in reverse than going forward?
  39. The varying distance between Earth and Sun
  40. Mission to Mars
  41. Kepler's calculation
  42. The Appearance (Phase) of the Moon

  43. Stability of Lagrangian points
  44. Can an Asteroid Impact Change the Earth's Orbit?
  45. Can Gravity Increase with Depth?
  46. Lightspeed, Hyperspace and Wormholes
  47. Why do Rockets Spin?
  48. Around What does the Sun Revolve?
  49. Why are planets in nearly the same plane?
  50. The Shapes of Rockets and Spacecraft
  51. Space Debris
  52. Teaching Nuclear Fusion
  53. Contribution of different elements to Sunlight
  54. Jewish Calendar
  55. Spaceflight Without Escape Velocity?
  56. Who first proposed a round Earth?
  57. Does Precession change the Length of a Year?
  58. The Analemma
  59. Changes of the Polar Axis of Earth
  60. Van Allen Belt and Spaceflight
  61. Nearest Star Outside Our Galaxy
  62. (a) Why are Satellites Launched Eastward?
          What is a "Sun Synchronous" orbit?
     (b) Why are satellites launched from near the equator?
  63. How Tall Can People Get?
  64. Gunpowder and Rockets
  65. Precession
  66. Solar Sails
  67. (a) Distance to the Big Dipper
     (b) Big Dipper star names

  68. Was Moon landing a hoax?
  69. Clockwise or counter-clockwise?
  70. Isotopes in Center of Earth
  71. Density of the Sun's corona and the "Scale Height"
  72. Did Tesla extract free energy from thin air?
  73. What does "lapse rate" mean?
  74. Motion of the Sun through space
  75. Teaching about tides
  76. Distance to the Horizon
  77. Can geocentrist theory still be possible?
  78. Can Earth's rotation reverse, like its magnetic polarity?
  79. Why is the Earth round?
  80. The De Laval Nozzle
  81. Why 23.5 degrees?
  82. What is Gravitational Collapse?
  83. Can Earth capture a second moon?

  84. How far does Earth's Gravity Extend?
  85. How far is the Moon?
  86. Twinkle, twinkle little star
    How I wonder, what you are.

  87. Teaching about seasons
  88. Space Launches by Cannon--A
  89. Space Launches by Cannon--B
  90. The Southern Pole of the Sky
  91. Do Astrologers use Wrong Positions for Planets?
  92. Why does the Moon have bigger craters?
  93. Why does Gravity Exist?
  94. Atmospheric "Thermals"--Triggered by Electric Forces?
  95. What would happen if Earth rotated faster?
  96. Where do gravity of Earth and Sun balance?
  97. The Ultimate Astronomy Tool
  98. High Temperature in Cold Outer Space

  99.   Refraction of sunlight and starlight by the atmosphere
  100.   Advice to a would-be astronomer
  101.   The effect of the Color of Light on the Output of Solar Cells
  102.   What is "radiation"?
  103.   Height of the Atmosphere
  104.   How does the upper atmosphere get so hot?
  105.   History of the use of De Laval's nozzle on rockets
  106.   Why don't Space Rockets use Wings?
  107. Distance of horizon on Mars
  108. Stopping the rotation of Earth?
  109. The equation of a parabola
  110. When does Jewish Sabbath start in the far north?
  111. Where is the center of the global landmass?
  112. What if our Sun was a much hotter star?
  113. Finding the north direction

  114. Why not use a heat shield going up?
  115. When and where can rainbows be seen?
  116. The unusual rotation of the planet Venus
  117. Why not use nuclear power for spaceflight?
  118. "Doesn't heat rise?"
  119. Have any changes been observed on the Moon?
  120. Why isn't our atmosphere flung off by the Earth's rotation?
  121. Can kinetic energy be reconverted to work?
  122. Does any location get the same number of sunshine hours per year?
  123. Speed of toy car rolling off an inclined ramp
  124. Acceleration due to gravity

  125. Re-Entry from Space
  126. Balancing a Bicycle
  127. Is Absolute Zero reached on the Moon?
  128. Why isn't Longitude measured from 0° to 360°?
  129. "Constellation" or "Asterism"?
  130. "Position of the Stars when I was Born"
  131. Rotation of the Earth's Core"
  132. How hot is the Sun?
  133. How much weaker is gravity higher up?
  134. Eclipse of Venus?
  135. The Big Bang

  136. Thanks for the "Math Refresher" in Spanish
  137. The Pressure of Sunlight
  138. How is the instant the seasons change determined?
  139. Operation of Ion Rockets
  140. Physical Librations of the Moon
  141. The De-Laval Nozzle
  142. Why does the space shuttle rotate at take-off?
  143. Cold Fusion
  144. What if a Neutron Star hit the Sun?
    Why did the Moon appear Red?
  145. Centrifuge for Whirling Astronauts
  146. What Holds Galaxies Together?
  147. View of Earth and Moon from Mars
  148. Appearance of the Moon (1)
  149. Appearance of the Moon (2): Does it "roll around"?
  150. Altitude of the tail of the Big Dipper
  151. Sudden decompression, 5 miles up

  152. Do Negative Ions make you Feel Good?
  153. Shape of the Earth's Orbit
  154. Questions about the Solar Corona:
                       (1) Why don't its particles separate by weight?
                        (2) What accelerates the solar wind?
  155. Why does the rising Sun look so big?
  156. Drawing a Perpendicular Line in Rectangular Coordinates
  157. Unequal Seasons
  158. Is the Big Dipper visible from Viet Nam?
  159. Holes in a Solar Sail
  160. Consequences of no more solar X-rays
  161. Science Fair Project on the Size of the Earth
  162. Superposition of Waves
  163. The Sun and Seasons
  164. If the Earth's Rotation would Stop...     (1)
  165. If the Earth's Rotation would Change...     (2)
  166. What if the Earth stopped in its orbit?
  167. Fast Trip to Mars     (1)
  168. Fast Trip to Mars     (2)

  169. Spacecraft Attitude
  170. What makes the Earth rotate?
  171. Energy from the Earth's Rotation?
  172. How were planets created?
  173. Does Precession of the Equinoxes shift our Seasons?
  174. "Zenial Days" on Hawaii
  175. Sun's Temperature and Energy Density of Sunlight
  176. Teaching about energy in 8th grade
  177. About the jetstream
  178. What would a breach in a space station do?
  179. Gravity at the Earth's center
  180. Freak waves on the ocean
  181. Citation on "Bad Greenhouse" web page
  182. How can radio waves carry sound?
  183. Do Cosmic Rays produce lightning?
  184. Star positions shifted by the atmosphere
  185. The equation of time
  186. Launch window of the Space Shuttle

  187. No "Man in the Moon" from Australia?
  188. Picturing the Sun from a different distance
  189. What makes the sun shine so brightly?
  190. Re-entry from orbit
  191. Effects of weightlessness on one's body
  192. Blimps on Mars
  193. Planet Mars "huge" in the sky, in August 2005? Astronomy and telescopes for ones' own children
  194. Does the solar wind have escape velocity
  195. Astronomy for cliff-dwellers of New York City
  196. Portable star finder
  197. What if the Moon was closer? (2 questions)
  198. Why doesn't the Moon have an atmosphere?
  199. Telling a 3-year old about the atmosphere (2 questions)
  200. Three-color vision

  201. Superconductors work, universe expands--with no energy input. Why?
  202. Shuttle orbit and Earth rotation
  203. Worrying about Wormholes and Black Holes
  204. What should I study?
  205. The greenhouse effect
  206. Separation between lines of latitude and longitude
  207. Motion of air: hot to cold, or high pressure to low?
  208. Removing "Killer Asteroids"
  209. Strange light seen from Hawaii
  210. Is the Sun attached to another star?
  211. What if the Sun turned into a black hole?
  212. Do absorption lines have a Doppler shift?
  213. What are "Electromagnetic Waves"?
  214. Why are the two daily tides unequal?
  215. Why air gets cold higher up--a wrong explanation

  216. Any limits to Newton's 2nd Law
  217. Gravity at the Earth's center
  218. Does the Earth follow a "squiggly" orbit?
  219. Third grader asks: how far to zero gravity?
  220. "How does inertia affect a rolling ball"?
  221. What determines the quality of a telescope?
  222. Why design maps around curved lines?
  223. "Drag" by the Sun on the Earth's motion
  224. Does precession affect the time of summer? (2 questions)
  225. Newton's law or Bernoulli's?
  226. Does the universe have an axis?
  227. Frictional electricity
  228. Syllabus for catching up on physics
  229. Parabolic reflector
  230. At what distance does Earth start looking spherical?
  231. Is the Sun on fire?
  232. Confusion about the "Big Bang"
  233. How did Tycho calibrate his instruments?

  234. Gases that fill balloons
  235. Asian tradition on the start of winter
  236. Why our year starts at January 1
  237. Sticking a hand out of a window...
  238. One year of continuous sunlight?
  239. Shielding out radio waves
  240. The way gravity changes with depth
  241. The Sun's Axis
  242. "Gravity Particles"?
  243. A "short stay on Mars"
  244. Weight and mass
  245. "The Moon Hoax"
  246. Shuttle re-entry from space
  247. Energy levels: plus or minus?
  248. How can such small targets be accurately hit so far away?
  249. A teacher asks about compiling lesson plans
  250. Why the Moon has its phases
  251. How can a spacecraft self-rotate?
  252. Stability during a rocket launch
  253. Boiling point of water in space

If you have a relevant question of your own, you can send it to
stargaze["at" symbol]phy6.org
Before you do, though, please read the instructions

  1.   Stability of Lagrangian Points

        I am currently studying astronomy, and found your article on Lagrangian points thoughtful and very useful in helping me understand. I do have one question for you if you don't mind, however. You mention that were it not for other influences, the Lagrangian points would be stable. How can this be? If would appear to me that as an object starts to move away from one of the points, the change in the gravitational pull from the sun would cause its orbital velocity to change, which in turn would cause it to move farther away from the L point. A closely related question is this: how can an object orbit a L point without having some mass to which the object is attracted to?
        I am sure the answer is simple, but my brain is hurting trying to figure this out. Your answer will be most appreciated.
        Regards, Larry

    Reply

      I wrote in "Stargazers" that if it were not for other attractions, L4 and L5 would be stable--but one should add that L1 and L2 are unstable. (Still, I am not sure about some "halo orbits" near them--see "The Art of the Orbit" by Gary Taubes, p. 620-622 Science, vol 283. 29 January 1999, section after the subhead "Three-body perfection.").

      If you are studying astronomy at the college level, you might find a relevant derivation in Symon's text "Mechanics." For objects that keep fixed positions in a ROTATING frame, the equilibrium can be studied in that frame by adding a centrifugal force, and then you can obtain a potential function and draw its contours. The problem then resembles that of a small ball rolling with no friction on a curved surface: if the L4 point is the center of a pit, small displacements would cause the ball to roll back, so the equilibrium is stable. Or else it could circle the pit, like a marble in a bowl: it needs no attraction from the middle.

      If instead it is on top of a dimple, a small displacement will cause the ball to roll even further away, never to return, which signifies an unstable equilibrium.

    .

  2. Can an Asteroid Impact Change the Earth's Orbit?

        I am 14 years old and enjoy doing physics a lot. I have read books on mechanics and quantum mechanics .etc. I have also been onto many physics websites. Yours is a very good one. I have a question for you. Do not laugh at it for I am only 14.

        If a meteor of significant mass hit the earth wouldn't this cause the earth in turn to move. Would its orbit be disrupted?

    Reply

    Dear Edward

        To give a short answer to your long question--not likely. Asteroids are far too small. An asteroid with a 10 km radius would have a volume less than one part in 200 million of the Earth, and if its mass were similarly scaled, the impact on the Earth would negligibly affect its orbit. Anything large enough to shift our orbit would have to be larger than any known asteroid, and the collision would be violent enough to wipe out all life.

        However.... you know that the Moon always presents Earth with the same face. If you read my section "The Moon--the distant view" you know that the reason is a slight elongation along the Earth-Moon line, and that the Moon's long axis slowly swings back-and-forth around the direction of Earth, like a pendulum ("libration"). I do not know the theory of those swings--they may be linked to the equatorial bulge of the Earth--but I vaguely recall an article in "Science," maybe 20-30 years ago, claiming that an asteroid impact started them, even identifying the crater which that impact produced. The rotation of the Moon or the Earth contains much less energy than the orbital motion, it can be affected by a slanting blow, and the Moon is so much smaller than Earth, so THAT is possible.

        Enjoy your physics, as well as other things that interest 14 year olds, and don't let your grades in other subjects slip!

        .

  3. Can Gravity Increase with Depth?

        A debate is raging in our office regarding the change in gravity on an object as it moves from the surface of the earth to its center. We hope you can help us resolve this life and death issue. Given that the earth's mass is NOT uniformly distributed, is it possible that the gravitational force can actually increase as a body moves just below the earth's surface before it starts to diminish as it approaches the center?

        Personally, I would think so. The logic being that if I assumed that the mass of the upper crust were zero, the closer the object moves towards the core the greater the gravitational pull (till the object penetrates the core).

    Ron

    Reply

    Dear Ron

        That is some neat question you have asked, and your qualitative argument is absolutely right. A short calculation (using some elementary calculus) makes it more precise.

        Suppose we are at a distance R from the center, the local density is D(R), and we move a test mass m downward by a small distance dR. If G is the constant of gravity and M the attracting mass, does gravitational attraction increase or decrease?

        In a spherically symmetric mass, any mass closer to the center than the attracted one acts as if they were concentrated at the center, while any which is more distant has no effect. That result is part of the theory of the potential, although Newton cleverly derived it from elementary considerations even before such a theory existed.

    Therefore, as our test mass advances a distance dR towards the center, the mass that is attracting it diminishes by dM = 4 p R2 D(R) dR, and the attracting force decreases by

    Gm dM/ R2 = Gm (4p R2 D(R) dR)/ R2 = K D(R) dR

    where K = 4p Gm. On the other hand, the closer approach to the center adds to the force

    GmM d(1/ R2) = GmM (2 dR/ R3)

        Let us ignore signs and just recognize the contributions are in opposite directions (the fact R is positive upwards while the force of gravity points downwards can confuse). If the average density of the mass M below is , then

    M = (4p/3) R3

    Substituting in the equation, canceling the cube power and introducing K gives

    K (2/3) dR

    Thus if D(R) is smaller than (2/3), gravity increases, if larger it decreases, which includes the case of constant density, D(R) = . A nice problem!             David

    .

  4. Lightspeed, Hyperspace and Wormholes

        My name is Yoga, I live in Indonesia and am 12 years old. I am interested by science fiction movies, especially about star travel, such Star Trek, Babylon V, and so.

        When I saw those movies, there was always something that confused me so much. What's the differences between LIGHTSPEED, HYPERSPACE, and WORMHOLE?

    I can understand about lightspeed, but I don't know if a wormhole could be used in space travel. As far as I know, quantum theory was just used to prove other dimensions of our world (parallel worlds), so is there any connections here between this wormhole and space travelling?

    Well, Mr. Stern, I think these are the questions to which I'd like to know the answers. Can you please help me?

    Reply

    Dear Yoga

        The stories of science fiction movies come from professional writers, not from scientists. About 100 years ago Einstein found (something confirmed since then in many ways) that no material object can move faster than light, 300,000 kilometers per second. (If YOU moved that fast, time would pass at a different rate, so TO YOU the speed might seem greater--but not to someone in the outside world).

        Writers of fantasy stories, and later of fantasy movies, felt restricted by that fact, which suggested that back-and-forth travel or communication with civilizations on planets outside the solar system was impossible on the short time scale of travel and communications between countries on Earth. As seen now, a projected trip to another world (even using technology we do not have yet!) might take many thousands of years.

        So writers picked up some scientific terms, suggesting some day in the future the limitation of light speed may be overcome, by using hyperspace or wormholes. However, these are just ways for literature and films to imagine things which physics says (at least right now) cannot be done. I am not sure about wormholes, which have to do with general relativity: the added dimensions proposed by some theories extend only a very short distance into our universe, and are not likely to help us navigate the three principal dimensions of our universe (or 4--though time is a different kind of dimension)

        If you like science fiction, you might look up "Flight of the Dragonfly" by Robert Forward for a physically acceptable way (though one technologically extremely difficult) of flying to a nearby star. .

  5. Why do Rockets Spin?

        I was recently watching a rocket launch down south and I was wondering why the rockets tend to spin upon take-off?? I know somewhat about rocket stability but this doesn't seem to apply, Is it something that can be controlled (automechanical) or is it an outside force?? I would greatly appreciate any info you could send me...
                       DAVE

    Reply

    Dear Dave

        The spin-up is deliberate. Any spinning object resists having its spin axis changed. You may know that rifle bullets are made to spin by the grooves in the barrel of the rifle, in order to stabilize them. It is the same way in some rockets, especially solid fueled ones. Manned spacecraft obviously do not spin. .

  6. Around What does the Sun Revolve?

    Hello,

    My almost 8 year young son Adam and I have a question about the revolution of the sun. We know that the planets revolve around the sun, and all have rotational periods also. We see that the sun aside from having a rotational period, also has a revolution of some 250 million years. We are curious what it is that the sun is revolving around?

    Reply

        I can only guess that your son came across a reference to the r