Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.cosmos.ru/mirrors/stern/stargaze/StarFAQ11.htm
Дата изменения: Unknown
Дата индексирования: Sat Dec 22 10:04:39 2007
Кодировка:

Поисковые слова: comet tail
"Get a Straight Answer" Site Map

Get a Straight Answer

Please note!

    Listed below are questions submitted by users of "From Stargazers to Starships" and the answers given to them. This is just a selection--of the many questions that arrive, only a few are listed. The ones included below are either of the sort that keeps coming up again and again, or else the answers make a special point, often going into details which might interest many users.

For an index file listing questions by topic, click here.


Items covered:

  1. About asteroids hitting Earth.
  2. The swirling of water in a draining tub.
  3. Dispensing water at zero-g.
  4. Robert Goddard and World War II.
  5. Asymmetry of the Moon's orbit.
  6. Measuring distance from the Sun.
  7. Who owns the Moon?
  8. Acceleration of a rocket.
  9. Rebounding ping pong balls (re. #35)
  10. Rebounding ping pong balls and gravity-assist
  11. Why don't we feel the Sun's gravity pull?
  12. How hot are red, white and blue (etc.) stars?
  13. How does the solar wind move?
  14. The shape of the orbit of Mars
  15. What if the Earth's axis were tilted 90° to the ecliptic?

  16. Mars and Venus
  17. Where is the boundary between summer and winter?
  18. The Ozone Hole
  19. What keeps the Sun from blowing up?
  20. Those glorious Southern Skies!
  21. Should we fear big solar outbursts?
  22. Planetary line-up and the sunspot cycle
  23. What are comet tails made of?
  24. If light speed sets the limit, why fly into space?
  25. Does precession mis-align ancient monuments?
  26. Why does the Earth rotate? Why is it a sphere?
  27. What's so hard about reaching the Sun?

  28. Where does space begin?
  29. Gravity at the Earth's Center
  30. Radiation hazard in space (3 queries)
  31. "Danger, falling satellites"?
  32. The Lagrangian L3 point
  33. Distance to the Horizon on an Asteroid
  34. Overtaking Planets
  35. Falling Towards the Sun
  36. The Polar Bear
  37. Are the Sun's Rays Parallel?
  38. More thrust in reverse than going forward?
  39. The varying distance between Earth and Sun
  40. Mission to Mars
  41. Kepler's calculation
  42. The Appearance (Phase) of the Moon

  43. Stability of Lagrangian points
  44. Can an Asteroid Impact Change the Earth's Orbit?
  45. Can Gravity Increase with Depth?
  46. Lightspeed, Hyperspace and Wormholes
  47. Why do Rockets Spin?
  48. Around What does the Sun Revolve?
  49. Why are planets in nearly the same plane?
  50. The Shapes of Rockets and Spacecraft
  51. Space Debris
  52. Teaching Nuclear Fusion
  53. Contribution of different elements to Sunlight
  54. Jewish Calendar
  55. Spaceflight Without Escape Velocity?
  56. Who first proposed a round Earth?
  57. Does Precession change the Length of a Year?
  58. The Analemma
  59. Changes of the Polar Axis of Earth
  60. Van Allen Belt and Spaceflight
  61. Nearest Star Outside Our Galaxy
  62. (a) Why are Satellites Launched Eastward?
          What is a "Sun Synchronous" orbit?
     (b) Why are satellites launched from near the equator?
  63. How Tall Can People Get?
  64. Gunpowder and Rockets
  65. Precession
  66. Solar Sails
  67. (a) Distance to the Big Dipper
     (b) Big Dipper star names

  68. Was Moon landing a hoax?
  69. Clockwise or counter-clockwise?
  70. Isotopes in Center of Earth
  71. Density of the Sun's corona and the "Scale Height"
  72. Did Tesla extract free energy from thin air?
  73. What does "lapse rate" mean?
  74. Motion of the Sun through space
  75. Teaching about tides
  76. Distance to the Horizon
  77. Can geocentrist theory still be possible?
  78. Can Earth's rotation reverse, like its magnetic polarity?
  79. Why is the Earth round?
  80. The De Laval Nozzle
  81. Why 23.5 degrees?
  82. What is Gravitational Collapse?
  83. Can Earth capture a second moon?

  84. How far does the Earth's gravity extend?
  85. How far is the Moon?
  86. Twinkle, twinkle little star
    How I wonder, what you are.
  87. Teaching about seasons
  88. Space Launches by Cannon--A
  89. Space Launches by Cannon--B
  90. The Southern Pole of the Sky
  91. Do Astrologers use Wrong Positions for Planets?
  92. Why does the Moon have bigger craters?
  93. Why does Gravity Exist?
  94. Atmospheric "Thermals"--Triggered by Electric Forces?
  95. What would happen if Earth rotated faster?
  96. Where do gravity of Earth and Sun balance?
  97. The Ultimate Astronomy Tool
  98. High Temperature in Cold Outer Space

  99.   Refraction of sunlight and starlight by the atmosphere
  100.   Advice to a would-be astronomer
  101.   The effect of the Color of Light on the Output of Solar Cells
  102.   What is "radiation"?
  103.   Height of the Atmosphere
  104.   How does the upper atmosphere get so hot?
  105.   History of the use of De Laval's nozzle on rockets
  106.   Why don't Space Rockets use Wings?
  107. Distance of horizon on Mars
  108. Stopping the rotation of Earth?
  109. The equation of a parabola
  110. When does Jewish Sabbath start in the far north?
  111. Where is the center of the global landmass?
  112. What if our Sun was a much hotter star?
  113. Finding the north direction

  114. Why not use a heat shield going up?
  115. When and where can rainbows be seen?
  116. The unusual rotation of the planet Venus
  117. Why not use nuclear power for spaceflight?
  118. "Doesn't heat rise?"
  119. Have any changes been observed on the Moon?
  120. Why isn't our atmosphere flung off by the Earth's rotation?
  121. Can kinetic energy be reconverted to work?
  122. Does any location get the same number of sunshine hours per year?
  123. Speed of toy car rolling off an inclined ramp
  124. Acceleration due to gravity

  125. Re-entry from Space
  126. Balancing a Bicycle
  127. Is Absolute Zero reached on the Moon?
  128. Why isn't Longitude measured from 0° to 360°? "Constellation" or "Asterism"?
  129. "Position of the Stars when I was Born"
  130. Rotation of the Earth's Core"
  131. How hot is the Sun?
  132. How much weaker is gravity higher up?
  133. Eclipse of Venus?
  134. The Big Bang

  135. Thanks for the "Math Refresher" in Spanish
  136. The Pressure of Sunlight
  137. How is the instant the seasons change determined?
  138. Operation of Ion Rockets
  139. Physical Librations of the Moon
  140. The De-Laval Nozzle
  141. Why does the space shuttle rotate at take-off?
  142. Cold Fusion
  143. What if a Neutron Star hit the Sun?
    Why did the Moon appear Red?
  144. Centrifuge for Whirling Astronauts
  145. What Holds Galaxies Together?
  146. View of Earth and Moon from Mars
  147. Appearance of the Moon (1)
  148. Appearance of the Moon (2): Does it "roll around"?
  149. Altitude of the tail of the Big Dipper
  150. Sudden decompression, 5 miles up

  151. Do Negative Ions make you Feel Good?
  152. Shape of the Earth's Orbit
  153. Questions about the Solar Corona:
                       (1) Why don't its particles separate by weight?
                        (2) What accelerates the solar wind?
  154. Why does the rising Sun look so big?
  155. Drawing a Perpendicular Line in Rectangular Coordinates
  156. Unequal Seasons
  157. Is the Big Dipper visible from Viet Nam?
  158. Holes in a Solar Sail
  159. Consequences of no more solar X-rays
  160. Science Fair Project on the Size of the Earth
  161. Superposition of Waves
  162. The Sun and Seasons
  163. If the Earth's Rotation would   S t o p...     (1)
  164. If the Earth's Rotation would   C h a n g e...     (2)
  165. What if the Earth stopped in its orbit?
  166. Fast Trip to Mars     (1)
  167. Fast Trip to Mars     (2)

  168. Spacecraft Attitude
  169. What makes the Earth rotate?
  170. Energy from the Earth's Rotation?
  171. How were planets created?
  172. Does Precession of the Equinoxes shift our Seasons?
  173. "Zenial Days" on Hawaii
  174. Sun's Temperature and Energy Density of Sunlight
  175. Teaching about energy in 8th grade
  176. About the jetstream
  177. What would a breach in a space station do?
  178. Gravity at the Earth's center
  179. Freak waves on the ocean
  180. Citation on "Bad Greenhouse" web page
  181. How can radio waves carry sound?
  182. Do Cosmic Rays produce lightning?
  183. Star positions shifted by the atmosphere
  184. The equation of time
  185. Launch window of the Space Shuttle
  186. No "Man in the Moon" from Australia?
  187. Picturing the Sun from a different distance
  188. What makes the sun shine so brightly?
  189. Re-entry from orbit
  190. Effects of weightlessness on one's body
  191. Blimps on Mars
  192. Planet Mars "huge" in the sky, in August 2005? Astronomy and telescopes for ones' own children
  193. Does the solar wind have escape velocity
  194. Astronomy for cliff-dwellers of New York City
  195. Portable star finder
  196. What if the Moon was closer? (2 questions)
  197. Why doesn't the Moon have an atmosphere?
  198. Telling a 3-year old about the atmosphere (2 questions)
  199. Three-color vision

  200. Superconductors work, universe expands--with no energy input. Why?
  201. Shuttle orbit and Earth rotation
  202. Worrying about Wormholes and Black Holes
  203. What should I study?
  204. The greenhouse effect
  205. Separation between lines of latitude and longitude
  206. Motion of air: hot to cold, or high pressure to low?
  207. Removing "Killer Asteroids"
  208. Strange light seen from Hawaii
  209. Is the Sun attached to another star?
  210. What if the Sun turned into a black hole?
  211. Do absorption lines have a Doppler shift?
  212. What are "Electromagnetic Waves"?
  213. Why are the two daily tides unequal?
  214. Why air gets cold higher up--a wrong explanation

  215. Any limits to Newton's 2nd Law
  216. Gravity at the Earth's center
  217. Does the Earth follow a "squiggly" orbit?
  218. Third grader asks: how far to zero gravity?
  219. "How does inertia affect a rolling ball"?
  220. What determines the quality of a telescope?
  221. Why design maps around curved lines?
  222. "Drag" by the Sun on the Earth's motion
  223. Does precession affect the time of summer? (2 questions)
  224. Newton's law or Bernoulli's?
  225. Does the universe have an axis?
  226. Frictional electricity
  227. Syllabus for catching up on physics
  228. Parabolic reflector
  229. At what distance does Earth start looking spherical?
  230. Is the Sun on fire?
  231. Confusion about the "Big Bang"
  232. How did Tycho calibrate his instruments?

  233. Gases that fill balloons
  234. Asian tradition on the start of winter
  235. Why our year starts at January 1
  236. Sticking a hand out of a window...
  237. One year of continuous sunlight?
  238. Shielding out radio waves
  239. The way gravity changes with depth
  240. The Sun's Axis
  241. "Gravity Particles"?
  242. A "short stay on Mars"
  243. Weight and mass
  244. "The Moon Hoax"
  245. Shuttle re-entry from space
  246. Energy levels: plus or minus?
  247. How can such small targets be accurately hit so far away?
  248. A teacher asks about compiling lesson plans
  249. Why the Moon has its phases
  250. How can a spacecraft self-rotate?
  251. Stability during a rocket launch
  252. Boiling point of water in space

If you have a relevant question of your own, you can send it to
stargaze["at" symbol]phy6.org
Before you do, though, please read the instructions

         

  1.   Spacecraft Attitude

    Well, it started when I wanted to know how can a spacecraft calculate its self-position in space. I started by assuming it'd take reference to stars surrounding it, but I didn't know if the movement of the stars were negligible so it would need to compensate for it, and if so -- how would the measurements take place, and with what kind of resolution.. and so on...

    Reply

    Concerning the "self-position" of a satellite, you probably mean its orientation in space or "attitude." It is a big subject and much depends on how accurate do you want it to be determined. If you are happy with half a degree, a "sun sensor" and an optical "horizon sensor" may give you enough information--for other uses, star cameras exist and have been used.

        A related question is, how do you rotate a satellite from one orientation to another? The usual way is to have gyroscopes, flywheels in constant rotation. Forcing the rotation axis into a new position causes the entire satellite to rotate in a way that preserves its angular momentum, then when you think it has rotated far enough, you return the axis of the gyroscope to its original direction and the satellite stops rotating. You can mount the gyroscope on gimbals and point it in different directions, or have independent gyroscopes for the (x,y,z) axes and spin them up and down. The Hubble telescope, whose attitude (orientation) must be constantly adjusted, has several gyroscopes, and one of the reason for visiting it from time to time is to replace gyroscopes, because their bearings etc. do wear out.

        Still another question is how to you express the direction of the satellite in space. You need two angles in spherical coordinates, which express the right ascension and declination of some axis on it, and you also need an angle to characterize rotation around that axis. With those you express (x,y,z) coordinates of points on the satellite. Rotating the satellite in space to a new (x',y',z') requires a calculation with matrices. A simple example is in problem 8 of

        http://www.phy6.org/stargaze/Strig6.htm,
    which continues at
        http://www.phy6.org/stargaze/Srotrans.htm
     

  2.  What makes the Earth rotate?

    Hi
        Dont mind a question, do you? I was just doing a little competition, and I came across this: What makes the Earth rotate?

    Reply

        We believe that the entire solar system started as a cloud of gas and dust which gradually pulled itself together by its own gravity. In such a process, a measure of rotation, known as angular momentum, is preserved. Angular momentum of a collection of matter is proportional to its mass, the square of the average distance R of the mass from the rotation axis and to the frequency F of rotations per second (or per year, or century... whatever units you choose).

        Any time a rotating cloud of matter gets reduced in size--as it did when Earth originated--R gets smaller. Therefore, to keep the angular momentum the same, F has to increase. It follows that even if the original nebula rotated very slowly, by the time it formed the Earth, it must have speeded up quite a bit.

        An analogy can be taken from the tornado, forming during times of severe thunderstorm activity. Usually thunderstorms are associated with vertical hot air rising and giving up energy (see section S-1A in "Stargazers") but there also exist horizontal flows of warm humid air into the storm (low down) and cold dry air out of it (high up).

        Usually everything is pretty symmetric, but sometimes a row of thunderstorms is formed ("squall line") and the flow of air in neighboring storms can set one of them slowly rotating. That is all it takes! As humid warm air is sucked into the rotating thunderstorm, its rotation gets faster and faster, and a tornado can result. Unlike hurricanes,though, tornadoes are too small for their direction of rotation to be related to the Earth's rotation.  

  3.   Energy from the Earth's Rotation?

    ... just personally, I have had an interest of tapping other sources of energy besides oil, etc. for the earth's energy needs. I have had an idea about gathering the 'rotational kinetic energy' produced by the spin of the earth? Its just something on the side that is an interest.

    Reply

    Using the energy of the Earth's rotation is an interesting idea, and it is feasible, but the way it's done is probably not what you had in mind. The problem is, to affect the rotation you need some other object which brakes it. It must be outside the earth--nothing on Earth will do it.

        Such an object exists: our Moon. The interaction between the Earth's rotation and the motion of the Moon raises tides in the oceans, and schemes to extract energy from tides therefore takes energy from the rotation of the earth and from the orbital energy of the Moon. Such schemes exist, but they are hard to implement (tides are low, salt water is corrosive) and give a low yield.

    See also next question, below.

     

  4.   How were planets created?

    Dear Dr. Stern,

        In your reply to Q 78 you write - "...It was established not when the planets cooled but before that, a relic of the swirling of the cloud of gas and dust from which the solar system (and the sun) formed..."

        My question is: From where did the "swirling cloud of gas and dust come? What is the SCIENTIFIC explanation????

    Reply

        From the evidence we have, all matter in the universe appeared--very hot, very dense--in the "big bang", about 13.8 billion years ago. I hope you do not expect me to recount all that evidence--expanding universe, microwave radiation etc.

        Applying to this event what we know about atomic nuclei tells us that when that matter cooled enough to form atoms, these were mainly hydrogen, some helium and a little lithium. The materials from which planets are made (also, you and me)--elements such as carbon, nitrogen, oxygen and the rest-- --are more complicated, and must have appeared later. Without those elements, no dust would exiss--and no Earth, either, since our planet is largely made up of them.

        It is generally held--and again, evidence exists, as well as theory, in which the late Hans Bethe, who just passed away at 98, had a big part--that heavier elements are "cooked," in part in the processes which even now power the Sun, but in addition (and especially the heaviest ones) in the sudden collapse of a supernova, which preceded the solar system. That includes such elements as uranium, which decay radioactively. From the radioactive content of moon rocks, they were dated about 4.7 billion years ago, and it is believed the Earth formed around that time, too.

        The material from which the solar system formed must have been the cloud of dust and gas left from the supernova (or maybe from more than one), gradually pulled together by gravity. And it must have been swirling even then, because the amount of swirl--angular momentum--is preserved in mechanical systems. Furthermore, astronomers have observed (using the Hubble telescope, among others), disks of swirling dust which presumably mark the birth of other planetary systems, or perhaps systems of binary stars.

        That, in a nutshell, is the "scientific explanation." We weren't there when it happened (the way the Almighty was, perhaps--see Job 38, v. 4), but we have plenty of evidence. You may also look up http://seds.lpl.arizona.edu/nineplanets/nineplanets/origin.html.
     

  5.  Does Precession of the Equinoxes shift our Seasons?

        A very good old friend of mine a few years ago told me that the reason our winters are starting to arrive later and later is because in a few thousand years, the axis of the earth will eventually change and our winter season will become summer season and vice versa. I'm no longer in touch with him but I always knew him to be a very knowledgeable person in the fields of cosmology and meteorology. But I have yet to read anywhere or meet anyone who could verify his claim. Is there any truth to his claim? I have noticed the change in the past twenty years so I'd really to get to the bottom of it and understand why this is happening.

    Reply

        Your friend had in mind a real phenomenon of nature, but it actually happens differently, and the results are not the ones your friend credited to it.

        The Earth orbits the Sun in a large flat plane, known as the ecliptic. The reasons we have winter, summer etc., is that the axis around which the Earth turns is not perpendicular to the ecliptic, but makes an angle of about 23.5 degrees to that perpendicular.

        Thus in the summer, the northern hemisphere is tilted towards the Sun, the north pole gets 24-hour sunshine and countries north of the equator also get longer days and more concentrated sunlight. Six months later, the axis still faces the same way in space, but now the Sun is on the other side, the north pole is in the shade all the time, the northern hemisphere gets longer nights and sunlight falls there at a more shallow angle, reducing its power to heat the land.

    All this is described in "Seasons of the year" at http://www.phy6.org/stargaze/Sseason.htm which also shows how seasons south of the equator are in opposite parts of the year.

        Now what your friend is aware of is that the direction of the Earth axis changes. It always makes an angle of about 23.5 degrees with the line perpendicular to the ecliptic plane--but while keeping this angle, it wanders around a cone, whose axis is perpendicular to the ecliptic. It takes about 26,000 years to go completely around that cone. The technical name for this phenomenon is "Precession of the Equinoxes" and it is described in

        http://www.phy6.org/Sprecess.htm

        Precession, however, does not make the seasons different from what they are now. The picture given in "Seasons of the Year," of the Earth tilted by 23