|
Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.cosmos.ru/mirrors/stern/stargaze/Itrig5.htm
Дата изменения: Unknown Дата индексирования: Sat Dec 22 08:29:36 2007 Кодировка: Поисковые слова: asteroid |
|
|
Given the functions (sina, cosa, sinb and cos b), we seek formulas that express sin(a+b) and cos(a+b). The first of these formulas is used in deriving the L4 and L5 Lagrangian points, here.
Please verify every calculation step before proceeding!
As shown in the drawing, to derive the formula we combine two right-angled triangles
ACD which " " " b
AC = R cos b
AB = AC cos a = R cos b cos a
R cos (a+b) = AF Start by deriving the sine:
In the right-angled triangle CED
EC = DC sin a = R sin b sin a
AB = R cos b cos a R sin (a+b) = BC+DE = R cos b sin a + R sin b cos a Cancelling R and rearranging a to precede b sin (a+b) = cos b sin a + sin b cos a
Similarly, for the cosineR cos (a+b) = AF = AB - FB = AB - EC = = R cos b cos a - R sin b sin a Cancelling R and rearranging cos (a+b) = cos a cos b - sin a sin b
|
Application of these formulas: #34b The L4 and L5 Lagrangian Points
Trigonometry Proficiency Drill
More "Trig": The Tangent
Author and Curator: Dr. David P. Stern
Mail to Dr.Stern: audavstern("at" symbol)erols.com .
Last updated 25 November 2001