Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.college.ru/enportal/physics/content/chapter9/section/paragraph4/theory.html
Дата изменения: Unknown
Дата индексирования: Sat Apr 9 22:31:39 2016
Кодировка: UTF-8

Поисковые слова: hst
?

Главная   Онлайн учебники   База репетиторов России   Товары для школы   Подготовка к ЕГЭ онлайн


о портале регистрация форум

ПОИСК

ПРЕДМЕТЫ

МАТЕМАТИКА    
ХИМИЯ    
БИОЛОГИЯ    
ФИЗИКА    

УРОВЕНЬ ОБРАЗОВАНИЯ

ВЫСШЕЕ    
ОБЩЕЕ    

ТИП РЕСУРСА

БД, энциклопедии, словари и справочники
Задачники и тесты
Методические материалы
Лабораторный практикум
Тренажеры и компьютерные модели
Наглядные пособия
Хрестоматии, учебники и тексты лекций

АУДИТОРИЯ

УЧАЩИЙСЯ    
ПРЕПОДАВАТЕЛЬ    


МЕТОДИЧЕСКИЙ КАБИНЕТ УЧЕБНИКИ И УЧЕБНЫЕ ПОСОБИЯ ОЛИМПИАДЫ И ТЕСТЫ ПЕРИОДИЧЕСКИЕ ИЗДАНИЯ

ВЕРНУТЬСЯ К СПИСКУ   

 

Главаљ9. Физика атома и атомного ядра

НазадВперед
9.4. Лазеры

Лазеры или оптические квантовые генераторы ? это современные когерентные источники излучения, обладающие целым рядом уникальных свойств. Создание лазеров явилось одним из самых замечательных достижений физики второй половины XXљвека, которое привело к революционным изменениям во многих областях науки и техники. К настоящему времени создано большое количество лазеров с различными характеристиками ? газовых, твердотельных, полупроводниковых, излучающих свет в различных оптических диапазонах. Лазеры могут работать в импульсном и непрерывном режимах. Мощность излучения лазеров может изменяться в пределах от долей милливатта до 1012?1013љВт (в импульсном режиме). Лазеры находят широкое применение в военной технике, в технологии обработки материалов, в медицине, в оптических системах навигации, связи и локации, в прецизионных интерференционных экспериментах, в химии, просто в быту и т.љд. Хотя первый лазер был построен сравнительно недавно (1960љг.), современную жизнь уже невозможно представить без лазеров.

Одним из важнейших свойств лазерного излучения является чрезвычайно высокая степень его монохроматичности, недостижимая в излучении нелазерных источников. Это и все другие уникальные свойства лазерного излучения возникают в результате согласованного, кооперативного испускания световых квантов многими атомами рабочего вещества.

Чтобы понять принцип работы лазера, нужно более внимательно изучить процессы поглощения и излучения атомами квантов света. Атом может находиться в различных энергетических состояниях с энергиями E1, E2 и т.љд. В теории Бора эти состояния называются стабильными. На самом деле стабильным состоянием, в котором атом может находиться бесконечно долго в отсутствие внешних возмущений, является только состояние с наименьшей энергией. Это состояние называют основным. Все другие состояния нестабильны. Возбужденный атом может пребывать в этих состояниях лишь очень короткое время, порядка 10?8 с, после этого он самопроизвольно переходит в одно из низших состояний, испуская квант света, частоту которого можно определить из второго постулата Бора. Излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое, называют спонтанным. На некоторых энергетических уровнях атом может пребывать значительно большее время, порядка 10?3 с. Такие уровни называются метастабильными.

Переход атома в более высокое энергетическое состояние может происходить при резонансном поглощении фотона, энергия которого равна разности энергий атома в конечном и начальном состояниях.

Переходы между энергетическими уровнями атома не обязательно связаны с поглощением или испусканием фотонов. Атом может приобрести или отдать часть своей энергии и перейти в другое квантовое состояние в результате взаимодействия с другими атомами или столкновений с электронами. Такие переходы называются безизлучательными.

Теперь самое главное. В 1916љгоду А.љЭйнштейн предсказал, что переход электрона в атоме с верхнего энергетического уровня на нижний может происходить под влиянием внешнего электромагнитного поля, частота которого равна собственной частоте перехода. Возникающее при этом излучение называют вынужденным или индуцированным. Вынужденное излучение обладает удивительным свойством. Оно резко отличается от спонтанного излучения. В результате взаимодействия возбужденного атома с фотоном атом испускает еще один фотон той же самой частоты, распространяющийся в том же направлении. На языке волновой теории это означает, что атом излучает электромагнитную волну, у которой частота, фаза, поляризация и направление распространения точно такие же, как и у первоначальной волны. В результате вынужденного испускания фотонов амплитуда волны, распространяющейся в среде, возрастает. С точки зрения квантовой теории, в результате взаимодействия возбужденного атома с фотоном, частота которого равна частоте перехода, появляются два совершенно одинаковых фотона-близнеца.

Именно индуцированное излучение является физической основой работы лазеров.

На рис.љ9.4.1 схематически представлены возможные механизмы переходов между двумя энергетическими состояниями атома с поглощением или испусканием кванта.

Рисунок 9.4.1.
Условное изображение процессовљ(a)љпоглощения, (b)љспонтанного испускания и (c)љиндуцированного испускания кванта.

Рассмотрим слой прозрачного вещества, атомы которого могут находиться в состояниях с энергиями E1 и E2 > E1. Пусть в этом слое распространяется излучение резонансной частоты перехода ν = ΔE / h. Согласно распределению Больцмана, при термодинамическом равновесии большее количество атомов вещества будет находиться в нижнем энергетическом состоянии. Некоторая часть атомов будет находиться и в верхнем энергетическом состоянии, получая необходимую энергию при столкновениях с другими атомами. Обозначим населенности нижнего и верхнего уровней соответственно через n1 и n2 < n1. При распространении резонансного излучения в такой среде будут происходить все три процесса, изображенные на рис.љ9.4.1. Эйнштейн показал, что процесс (a) поглощения фотона невозбужденным атомом и процесс (c) индуцированного испускания кванта возбужденным атомом имеют одинаковые вероятности. Так как n2 < n1 поглощение фотонов будет происходить чаще, чем индуцированное испускание. В результате прошедшее через слой вещества излучение будет ослабляться. Это явление напоминает появление темных фраунгоферовских линий в спектре солнечного излучения. Излучение, возникающее в результате спонтанных переходов, некогерентно и распространяется во всевозможных направлениях и не дает вклада в проходящую волну.

Чтобы проходящая через слой вещества волна усиливалась, нужно искусственно создать условия, при которых n2 > n1, т.ље. создать инверсную населенность уровней. Такая среда является термодинамически неравновесной. Идея использования неравновесных сред для получения оптического усиления впервые была высказана В.љА.љФабрикантом в 1940љгоду. В 1954љгоду русские физики Н.љГ.љБасов и А.љМ.љПрохоров и независимо от них американский ученый Ч.љТаунс использовали явление индуцированного испускания для создания микроволнового генератора радиоволн с длиной волны λ = 1,27 см. За разработку нового принципа усиления и генерации радиоволн в 1964љгоду все трое были удостоены Нобелевской премии.

Среда, в которой создана инверсная населенность уровней, называется активной. Она может служить резонансным усилителем светового сигнала. Для того, чтобы возникала генерация света, необходимо использовать обратную связь. Для этого активную среду нужно расположить между двумя высококачественными зеркалами, отражающими свет строго назад, чтобы он многократно прошел через активную среду, вызывая лавинообразный процесс индуцированной эмиссии когерентных фотонов. При этом в среде должна поддерживаться инверсная населенность уровней. Этот процесс в лазерной физике принято называть накачкой.

Начало лавинообразному процессу в такой системе при определенных условиях может положить случайный спонтанный акт, при котором возникает излучение, направленное вдоль оси системы. Через некоторое время в такой системе возникает стационарный режим генерации. Это и есть лазер. Лазерное излучение выводится наружу через одно (или оба) из зеркал, обладающее частичной прозрачностью. На рис.љ9.4.2 схематически представлено развитие лавинообразного процесса в лазере.

Рисунок 9.4.2.
Развитие лавинообразного процесса генерации в лазере.

Существуют различные способы получения среды с инверсной населенностью уровней. В рубиновом лазере используется оптическая накачка. Атомы возбуждаются за счет поглощения света. Но для этого недостаточно только двух уровней. Каким бы мощным не был свет лампы?накачки, число возбужденных атомов не будет больше числа невозбужденных. В рубиновом лазере накачка производится через третий выше расположенный уровень (рис.љ9.4.3).

Рисунок 9.4.3.
Трехуровневая схема оптической накачки. Указаны ?времена жизни? уровней E2 и E3. Уровень E2 ? метастабильный. Переход между уровнями E3 и E2 безызлучательный. Лазерный переход осуществляется между уровнями E2 и E1. В кристалле рубина уровни E1, E2 и E3 принадлежат примесным атомам хрома.

После вспышки мощной лампы, расположенной рядом с рубиновым стержнем, многие атомы хрома, входящего в виде примеси в кристалл рубина (около 0,05љ%), переходят в состояние с энергией E3, а через промежуток τ — 10?8 с они переходят в состояние с энергией E2. Перенаселенность возбужденного уровня E2 по сравнению с невозбужденным уровнем E1 возникает из-за относительно большого времени жизни уровня E2.

Лазер на рубине работает в импульсном режиме на длине волны 694 мм (темно-вишневый свет), мощность излучения может достигать в импульсе 106?109 Вт. Исторически это был первый действующий лазер (американский физик Т.љМайман, 1960љг.).

Одним из самых распространенных лазеров в настоящее время является газовый лазер на смеси гелия и неона. Общее давление в смеси составляет порядка 102 Па при соотношении компонент He и Ne примерно 10 : 1. Активным газом, на котором возникает генерация на длине волны 632,8 нм (ярко-красный свет) в непрерывном режиме, является неон. Гелий является буферным газом, он участвует в механизме создания инверсной населенности одного из верхних уровней неона. Излучение He?Ne лазера обладает исключительной, непревзойденной монохроматичностью. Расчеты показывают, что спектральная ширина линии генерации He?Ne лазера составляет примерно Δν — 5ћ10?4 Гц. Это фантастически малая величина. Время когерентности такого излучения оказывается порядка τ — 1 / Δν — 2ћ103 с, а длина когерентности cτ — 6ћ1011 м, т.ље. больше диаметра земной орбиты!

На практике многие технические причины мешают реализовать столь узкую спектральную линию He?Ne лазера. Путем тщательной стабилизации всех параметров лазерной установки удается достичь относительной ширины Δν / ν порядка 10?14?10?15, что примерно на 3?4 порядка хуже теоретического предела. Но и реально достигнутая монохроматичность излучения He?Ne лазера делает этот прибор совершенно незаменимым при решении многих научных и технических задач. Первый гелий-неоновый лазер был создан в 1961љгоду. На рис.љ9.4.4 представлена упрощенная схема уровней гелия и неона и механизм создания инверсной населенности лазерного перехода.

Рисунок 9.4.4.
Механизм накачки He?Ne лазера. Прямыми стрелками изображены спонтанные переходы в атомах неона.

Накачка лазерного перехода E4 → E3 в неоне осуществляется следующим образом. В высоковольтном электрическом разряде вследствие соударений с электронами значительная часть атомов гелия переходит в верхнее метастабильное состояния E2. Возбужденные атомы гелия неупруго сталкиваются с атомами неона, находящимися в основном состояние, и передают им свою энергию. Уровень E4 неона расположен на 0,05љэВ выше метастабильного уровня E2 гелия. Недостаток энергии компенсируется за счет кинетической энергии соударяющихся атомов. На уровне E4 неона возникает инверсная населенность по отношению к уровню E3, который сильно обедняется за счет спонтанных переходов на ниже расположенные уровни. При достаточно высоком уровне накачки в смеси гелия и неона начинается лавинообразный процесс размножения идентичных когерентных фотонов. Если кювета со смесью газов помещена между высокоотражающими зеркалами, то возникает лазерная генерация. На рис.љ9.4.5 изображена схема гелий-неонового лазера.

Рисунок 9.4.5.
Схема гелий-неонового лазера: 1 ? стеклянная кювета со смесью гелия и неона, в которой создается высоковольтный разряд; 2 ? катод; 3 ? анод; 4 ? глухое сферическое зеркало с пропусканием менее 0,1љ%; 5 ? сферическое зеркало с пропусканием 1?2љ%.

Современные высокостабильные гелий-неоновые лазеры производятся в моноблочном исполнении. Для этого используется стеклообразное вещество ? ситалл, обладающий практически нулевым температурным коэффициентом расширения. В куске ситалла в форме прямоугольного параллелепипеда просверливается канал, к торцам которого на оптическим контакте приклеиваются лазерные зеркала. Канал заполняется смесью гелия и неона. Катод и анод вводятся через дополнительные боковые каналы. Такая моноблочная конструкция обеспечивает высокую механическую и тепловую стабильность.


НазадВперед
Наверх

   УЧЕБНАЯ ТЕХНИКА
   УЧЕБНЫЕ CD

ИДЕНТИФИКАЦИЯ


Логин
Пароль
зарегистрироваться

ПАРТНЕРЫ


PHYS.WEB.RU PHYS.WEB.RU
ФИЗИКОН ФИЗИКОН
РОСУЧПРИБОР РОСУЧПРИБОР


ї2002-2003 Министерство образования Российской Федерации
ї2002-2003 СПбГУ ИТМО
ї2002-2003 Группа компаний СТЕК
ї2002-2003 Студия 1ADW
?

Главная   Онлайн учебники   База репетиторов России   Товары для школы   Подготовка к ЕГЭ онлайн