Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.atnf.csiro.au/whats_on/workshops/synthesis2003/talks/multibeaming.pdf
Дата изменения: Thu May 22 05:21:17 2003
Дата индексирования: Wed Dec 26 11:46:47 2007
Кодировка:

Поисковые слова: п п п п п п п п п п п п п п п п п п п п п п п п п п п п п
Multi-beaming & Wide Field Surveys

Anne Green University of Sydney

15 May, 2003

Multibeaming & Wide Field Surveys

1


Outline ! ! ! ! Multibeaming definitions Molonglo Observatory Synthesis Telescope The SKAMP Project SKA & Multiple possibilities

15 May, 2003

2


Multibeaming principles and definitions

! ! ! !

Everyone is doing it! Let's get the terms right Primary beam ­ individual element Fields of view & multiple beams

15 May, 2003

3


Multi beams
Station beams
16

Element antenna pattern = primary beam Synthesized beams from correlator

12

8

4

! Observing teams with their own beams
! Can have all beams simultaneously

15 May, 2003

4


Molonglo Observatory Synthesis Telescope

Photo: G. Warr

15 May, 2003

5


Current Observing Statistics
! ! ! ! ! ! ! ! 843 MHz continuum 3 MHz bandwidth 43" spatial resolution Field of view 23' ­ 160' Number of beams formed 128 - 896 Sensitivity ~1 mJy/beam Dynamic range ~200:1 Full synthesis in 12 hr
6

15 May, 2003


V( ) = e
15 May, 2003
n=- N

N

j

2



( nx ) sin( )

~

sin(L / ) (L / )

7


Rotation of fan beams during an observation

15 May, 2003

8


A wider field of view with minimum grating artefacts

15 May, 2003

9


Instantaneous versus synthesis visibility functions & beamshapes

15 May, 2003

10


Continuous uv coverage gives excellent image quality:

750 m

1.6 km

(Bock et al. 1999)

!Continuous uv coverage from 15 m to 1.6 km in 12hr synthesis
15 May, 2003 11


Faxplot and image for Field 2144 (J0127-366)

15 May, 2003

12


Faxplot and image for Field 971 (J2018-557)

15 May, 2003

13


Real time beam-forming at Molonglo

15 May, 2003

14


Coverage with small Field of View (1982 ­ 1997)

15 May, 2003

15


SUMSS Survey Fields < -30 degrees (1997 ­ 2003)

15 May, 2003

16


Molonglo Galactic Plane Survey
image at 843 MHz

15 May, 2003

17


The Square Kilometre Array Molonglo Prototype (SKAMP) Goal: To equip the Molonglo telescope with new feeds, low-noise amplifiers, digital filterbank and FX correlator with the joint aims of: (i) developing and testing SKA-relevant technologies and (ii) providing a new capability for lowfrequency radio astronomy in Australia
15 May, 2003 18


Key features of SKAMP
Collecting area = 1% of SKA (i.e. equivalent to 1 SKA station)
! Multibeaming ! Wide-band line feeds

! Wide instantaneous field of view ! Digital beamforming ! Wide-band FX correlator
(2048 channels)

and LNAs

! Cylindrical antenna prototype ! Adaptive null steering and adaptive noise cancellation

! Frequency and pointing agility
15 May, 2003

19


Target specifications
Parameter Frequency Coverage Bandwidth (BW) Resolution ( < -30°) 1420 MHz 300 MHz 300­1420 MHz 250 MHz 26" x 26" csc|| 123" x 123" csc||

Imaging field of view 1.5° x 1.5° csc|| 7.7° x 7.7° csc|| UV coverage Fully sampled Tsys < 50K < 150K System noise (1) 12 hr: 11 µJy/beam 33 µJy/beam 8 min: 100 µJy/beam 300 µJy/beam Polarisation Dual Linear Correlator I and Q (Full Stokes at 125 MHz BW) Frequency resolution 120­1 kHz (FXF mode: 240 Hz) Independent fanbeam 1.3' x 1.5° 6.2' x 7.7° Indep. fanbeam offset ±6° ±27° Sky accessible in < 1 s 180 deg2 1000 deg2
15 May, 2003 20


Signal Path and Antenna Pattern
Cylindrical Parabolic Collectors
(Two collinear 778 m x 12 m)

300-1420 MHz Feed and LNA
(7,400 feeds, 14,800 LNAs)

Single feed beam Delay line beam Independent fanbeam Imaging beam

Delay line beamforming Analog to Digital Converter Digital delay beamforming
(80 x10 m x 10 m patches)

(1,600 8 bit 250 MHz BW ADCs)

Digital filterbank (160) (Two polarisations @ 250 MHz/patch)
(3,160 baselines, 2,048 channels)

Independent fanbeam Digital Beamformer

FX Correlator

(imaging, spectrometer, searching...)

Signal processing & storage

(64 fanbeams within imaging beam) [Requires extra funding]

15 May, 2003

21


Science outcomes & goals Imaging survey at range of frequencies High redshift HI absorption in galaxies Transient source monitoring Pulsar survey Radio recombination lines & absorption observations of HII regions ! SNR searches ­ ISM structure ! ! ! ! !
15 May, 2003 22


Science goals: High-redshift radio galaxies using continuum data

Radio spectral index measurements using MOST and other catalogues below about 1400 MHz are an efficient way of selecting high-redshift (z>3) radio galaxies (e.g. de Breuck et al. 2000).

Radio galaxy TN0924-2201 at z=5.19
(van Breugel et al. 1999) 15 May, 2003 23


Science goals: HI absorption spectra from distant galaxies

820-870 MHz range and 2048 spectral channel FX correlator enables: · Measurements of HI absorption at z ~ 0.75 that capitalise on the large collecting area of MOST

(Lane 2000) Stage II enables HI measurements at z ~ 0.75, where other methods are not well constrained

15 May, 2003

(Lane and Briggs 2001) 24


RFI at Molonglo 200-1500 MHz
(Measured 25 June 2001)

Measured Power (dBm)

-75 -85 -95 -105 -115 0

VHF TV

UHF TV

GSM

500

1000

1500
25

Frequency (MHz)
15 May, 2003


The Square Kilometre Array (SKA) Project

! Multiple beams & multiple FOV ! Benefits of baseband recording ! http://www.atnf.csiro.au/ska

15 May, 2003

26


Multibeaming with the SKA ! ! Primary beam ­ individual element Field of view ­ continuous image area * whole SKA or sub-array * single station (or core) Multiple beams ­ within FOV

!

15 May, 2003

27


SKA Poster

15 May, 2003

28


Large, imaging Fields of View ! Contiguous FOVs: blind survey over large area, continuous Galactic structures ! HI in emission and the Cosmic web ! Formation & evolution of galaxies: clustering, lensing ! Separated FOVs: parallel projects, deep survey
15 May, 2003 29


Multiple beams ­ in one FOV ! Pulsar timing ! Multiple targets ­ X-ray binaries (XRBs), -ray bursters (GRBs), supernovae (SNe) ! Simultaneous, multi-frequency studies of intra-day variables (IDVs) ! RFI mitigation

15 May, 2003

30


Baseband recording ! By the Nyquist theorem, we can store all the information by sampling at twice the bandwidth and saving the data to tape. ! Expensive on computer time. ! Hold up to 1 hour data in buffer ­ save when triggered, limited to one FOV. ! Targets ­ GRBs, pulsar glitches & timing, SNe, polarisation, RFI mitigation.
15 May, 2003 31


Practical Demonstration of reciprocity

Molonglo Observatory Synthesis Telescope

Light Emitting Analogue of Synthesis Telescope

15 May, 2003

32