Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.atnf.csiro.au/whats_on/workshops/comp2005/talks/sutherland.pdf
Дата изменения: Fri May 13 07:26:39 2005
Дата индексирования: Wed Dec 26 03:08:05 2007
Кодировка:

Поисковые слова: galactic collision
Ralph Sutherland RSAA, ANU, ANITA


Cooling in the ISM


Cooling in the ISM


Example: Nearby RGs with Resolved Hosts M87

Sparkes et al 2004 astro-ph/0402204


Example: Active Galaxies: Cen A


Example: Equilibrium Heating and Cooling: HII regions


Example: Galactic ISM


Example: Galactic ISM


Example: z= 3.8 galaxy 4C41.7

4C41.17 Scharf et al 2003


Theoretical Approach: ISM thermal emission

-12.0
log[Flux (f )]

-14.0
a. b. c.

3000

4000

5000 6000 7000 Wavelength (е)

8000

9000


Detailed Cooling

OIII
1s2 2s2 2p2 1S0

1s2 2s2 2p3 3D3,2,1 1s2 2s2 2p3 5S2

833-835 [4363] 1s2 2s2 2p2 1D 2

1661,1666]

[2315,21,31]

[4959,5007]

3

1s2 2s2 2p2 3P0,1,2

P0 - 3P1 [88.16µm] 3 P0 - 3P2 [32.59µm] 3 P1 - 3P2 [51.69µm]


Detailed Cooling

J'=5 4 3 2 1

30B 20B 12B 6B 2B

J'=0

=1
a.) Rotational Spectrum
2B 2B 2B 2B 0 Energy

J=5 4 3 2 1

a. b.

30B 20B 12B 6B 2B

J=0

=0
b.) Ro-vibration Spectrum
2B 2B 2B J = -1 P 4B 2B 2B 2B J = +1 R 0 (J = 0) Q


Detailed Cooling

[OIII] 5007,4363
log[Flux] -23.0 -24.0 -25.0 -26.0 -27.0 3.0 4.0 5.0 6.0 7.0 -2.0 -3.0

[5007] [4363]

log[Ratio] 0.0 -1.0

3.5 4.0 4.5 5.0 5.5

log[T (K)]

log[T (K)]


Detailed Cooling

1663

log[Te] @ log[ne] = 2.0

log[ne] 7.25 8.0

-1.0
4.2

5.0 4.4 3.8 4.0 4.2 4.4 5.0 8.75

[OIII] 4363 / [OIII]

-2.0

4.0

-3.0

3.8

log[Te] @ log[ne] = 9.5

-3.0

-2.0

-1.0

0.0

[OIII] 4363 / [OIII] 5007


Cooling in the ISM

0.0 -1.0

Oxygen

log[ Ionization Fraction ]

-2.0 -3.0 -4.0 0.0 -1.0 -2.0 -3.0 -4.0 4.0 5.0 6.0 Iron

log[ Te (K)

7.0

8.0

9.0


Cooling in the ISM

15.0 14.0

Carbon

Iron

(s) ]

13.0 12.0 11.0 10.0 9.0
I IV III II VI V

VII III V VII XVI X II VI VI XXV

XXVII

log[

XVII

XXIV

5.0

6.0

7.0

8.0

5.0

6.0

7.0

8.0

log[ Te (K) ]


Cooling in the ISM

-21.0

CIE [Fe/H] = 0

(erg cm3 s-1) ]

NEQ [Fe/H] = 0

-22.0
NEQ [Fe/H] = -1.0

log[

NEQ Zero Metals

-23.0

4.0

5.0

6.0

7.0

8.0

9.0

log [ Te (K) ]


Cooling in the ISM

Temperature, Cooling & Densities

Cooling & Densities L 10
21

5.0

Te

log[ Te, n, L ]

3.0 2.0 1.0 8.0

L

1024 n ne
e
isobaric

ne

n

1.0

ne nH

H

9.0

10.0

log[nt

(cm-3

s) ]

11.0

5.5

a

5.0

log[Te (K) ]

4.5

b

4.0

c

3.5

d

3.0

Timescales

Oxygen Ionization
coll.

13.0

photo.

II III

I

0.0 -1.0

12.0 11.0 10.0 9.0

rec. eq. cool p r e

IV V,VI

-2.0 -3.0 -4.0

coll. cool

eq.

VII

cool

a

b
8.0 9.0 10.0

11.0

cd
5.5 5.0 4.5 4.0 3.5 3.0

log[nt

(cm-3

s) ]

log[Te (K) ]

log[ Ion Fraction ]

log[ n (cm-3 s) ]

log[ n, L ]

4.0

nH

2.0


Cooling in the ISM
275 000 K -5.0 -10.0 -15.0 Collisions -5.0 -10.0 -15.0 219 000 K EQ/NEQ

log[ F (ergs cm-3 s-1 sr-1)]

0.0 105 000 K -5.0 -10.0 -15.0

1.0

2.0 Cooling -5.0 -10.0 -15.0

0.0 20 000 K

1.0

2.0 Cooling

0.0 10 000 K -5.0 -10.0 -15.0

1.0

2.0

0.0 1 000 K -5.0 -10.0 -15.0

1.0

2.0

Photoionization

Cold, Recomb.

0.0

1.0

2.0

0.0

1.0

2.0

log[ photon Energy (eV)]


Cooling in the ISM

log[ Te (K), density (cm-3)]

6.0 4.0 2.0 0.0 -2.0

X-ray Ionization

Upstream photoionized zone

Te

Te Hot/ Cooling zone ne nH

photoionized zone

X-ray Ionization

6.0 4.0 2.0 0.0 -2.0

n H
II

Te nH ne H
I

H

H

I

log[ Te (K) >100, Ion Fraction (<1)]

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 6.0 4.0 2.0 0.0 -2.0
C
II

1.0 2.0 3.0 4.0 5.0 6.0
Te

6.0
Te

Te

4.0 2.0

C

III

C

V

C

VII VI

C

II III IV

0.0 -2.0

C

III

VI

V

V

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0

1.0 2.0 3.0 4.0 5.0 6.0

nt (1012 cm-3 s)

Shock Front

nt (1012 cm-3 s)


Cooling in the ISM

-21.0

CIE [Fe/H] = 0

(erg cm3 s-1) ]

NEQ [Fe/H] = 0

-22.0
NEQ [Fe/H] = -1.0

log[

NEQ Zero Metals

-23.0

4.0

5.0

6.0

7.0

8.0

9.0

log [ Te (K) ]


Theoretical Approach: ISM Thermal Emission

· · · ·


Theoretical Approach: ISM thermal emission

· · · · ·


Theoretical Approach: ISM thermal emission


Initial Conditions

It would be useful to have a simple parameterisation that captures more of the ISM properties, beyond smooth distributions Simulations must change from a simple locally uniform geometric initial conditions, <>,

and v ­ to a description of a skewed density/ velocity distribution, with a fractal turbulent spatial distribution.


Single Point and Two Point statistics of a Fractal turbulent ISM

·
·
· · · · ·

·
· · ·


Initial Conditions · µ

µ

·

·


Dynamic Galaxy X-ray SED: Host ISM

Kolmogarov Spectrum Density, 2 = 5



New 3D X-ray Spectral Synthesis Shock Models

·

· ·


3D X-ray Wall Shock Model X-ray Rendering
Soft X-ray Emission R = 0.2-0.3 keV G= 0.3-0.4 keV B = 0.4-0.5 keV


3D X-ray Wall Shock Model Spectra


3D X-ray Wall Shock Model Thermal Distribution


3D X-ray Wall Shock Model Cooling Distribution

2 D

2 D 1 D

1D minimum


3D X-ray Spectral Synthesis Shock Models Summary
· 3D dynamical models are essential, as the turbulence and thermal instability generated structures are affected by the dimensionality of the simulations. · By influencing the distribution of density and temperatures over time, the resulting spectrum is also dependent on the model dimensionality. · Only steady shocks can be computed accurately in 1D or 2D. · These 3D models will give new spectra for the ionising field produced by shockwaves in the ISM


3D X-ray Spectral Synthesis Shock Models Summary
Limitations of new models presented here: · Avoiding, for now, the difficult 3D radiative transfer problem, restricting to optically thin Xray models and radio emission · They are a compromise between complete selfconsistency and speed of execution · These 3D models remain limited in resolution, new methods will be required to solve higher velocity shocks. Normal adaptive mesh methods will not be sufficient.


Dynamic Galaxy X-ray SED: Radio Jet -- X-ray overlay


Dynamic Galaxy X-ray SED: Spectra


Dynamic Galaxy X-ray SED: Spectra


Dynamic Galaxy X-ray SED: X-ray rotation


Future Directions - Hot Bubbles and Entrainment
Hot - Cool Medium Interface Regions

M87 jet bubble Sparks et al 2004.

Model