Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.atnf.csiro.au/computing/software/gipsy/sub/gaussn.shl
Дата изменения: Wed Apr 17 19:25:22 1996
Дата индексирования: Fri Jan 16 01:15:39 2009
Кодировка:

Поисковые слова: storm
C#> gaussn.dc2
C
CFunction: GAUSSN
C
CPurpose: GAUSSN computes the value of an N-component Gaussian
C
CFiles: gaussn.dc2,gaussn.shl
C
CAuthor: Peter Roelfsema
C
CCategory: UTILITY
C
CCall:
C
C GX=GAUSSN(X,PAR,NPAR)
C
C Input parameters:
C X -R -running coordinate.
C PAR -R -array defined as follows: PAR(0:NPAR*3) that
C contains the parameters for the Gaussian in the following
C order:
C
C PAR(0) -zerolevel
C PAR(1) -PAR(3) -int, pos. of peak, fwhm cmp. 1
C . .
C PAR(1+3*n)-PAR(3+3*n)-int, pos. of peak, fwhm cmp. n-1
C etc
C NPAR -I -number of components.
C
CUse:
C GAUSSN gives the value of a multi-component gaussian.
C Note that the Gaussian components are defined in terms of
C their Intensity, centre coordinate and Full Width at Half
C Maximum ( i.e. not in terms of amplitude and sigma ! ).
C
C
C Call:
C
C CALL DGAUSN(X,PAR,DERIV,NPAR) ( entry point in GAUSSN )
C
C Input parameters:
C X -R -running coordinate.
C PAR -R -array defined as follows: PAR(0:NPAR*3) that
C contains the parameters for the Gaussian in the following
C order:
C
C PAR(0) -zerolevel
C PAR(1) -PAR(3) -int, pos. of peak, fwhm cmp. 1
C . .
C PAR(1+3*n)-PAR(3+3*n)-int, pos. of peak, fwhm cmp. n-1
C etc
C NPAR -I -number of components.
C Output parameters:
C DERIV -R -array defined as follows: DERIV(0:NPAR*3) that
C contains the partial derivatives in the following order:
C DERIV(0) -part. deriv of zerolevel
C DERIV(1)-DERIV(3) -part. derivs. of cmp. 1
C . .
C DERIV(1+3*n)-DERIV(3+3*n)-part. derivs. of cmp. n-1
C etc
C
C
CUse:
C DGAUSN gives the partial derivatives for the gaussian.
C Note that the Gaussian components are defined in terms of
C their Intensity, centre coordinate and Full Width at Half
C Maximum ( i.e. not in terms of amplitude and sigma ! ).
C
C
C Update History:
C 8- 7-85-PRR.-original document
C 16- 6-86-PRR.-converted for VAX8600
C 26- 2-92-PRR.-converted to new GIPSY
C#<
C
C@ real function gaussn( real , real , integer )
C@ subroutine dgausn( real , real , real , integer )
C
REAL FUNCTION GAUSSN(X,PAR,NPAR)
C
C ----------------------------------------------------------------
C
C GAUSSN gives the value of a multi-component guassian
C
C DGAUSN gives the partial derivatives for this gaussian
C
C The parameters and deriavatives are defined as follows:
C PAR(0) -zerolevel
C DERIV(0) -part deriv zero level
C PAR(1) -PAR(3) -int, pos. of peak and fwhm of component 1
C DERIV(1)-DERIV(3) -part. derivs. of component 1
C . .
C PAR(1+3*n)-PAR(3+3*n)- int, pos. of peak, fwhm of comp. n-1
C etc
C
C ----------------------------------------------------------------

N.natural logarithm of 2: LN(2)
PARAMETER ( RLN2 = 0.6931472 )
N.factor to calculate the amplitude: 2*SQRT(LN(2)/PI)
PARAMETER ( A0 = 0.9394373 )

N.running coordinate
REAL X
N.parameter array
REAL PAR(0:*)
N.array with derivatives
REAL DERIV(0:*)
N.buffer variables
REAL GAUSS,A

N.number of parameters
INTEGER NPAR
N.number of components
INTEGER NCOMP
N.loop counter
INTEGER I

E *** Main code ***
N.determine number of components
NCOMP=(NPAR-1)/3

N.zero level
GAUSS=PAR(0)
N.loop on all components
FOR I=0,(NCOMP-1)
N.argument of exponential
IF (PAR(I*3+3) .NE. 0.0)
THEN
A=(X-PAR(I*3+2))/PAR(I*3+3)
N.add component to what we had already
GAUSS=GAUSS+A0*PAR(I*3+1)/PAR(I*3+3)*EXP(-4*RLN2*A*A)
CIF
CFOR

GAUSSN=GAUSS
RETURN


C#> dgausn.dc2
C
CName: DGAUSN
C
C
CPurpose: DGAUSN computes the partial derivatives of that Gaussian
C
CFiles: dgaussn.dc2,gaussn.shl
C
CAuthor: Peter Roelfsema
C
C
C Call:
C
C CALL DGAUSN(X,PAR,DERIV,NPAR) ( entry point in GAUSSN )
C
C Input parameters:
C X -R -running coordinate.
C PAR -R -array defined as follows: PAR(0:NPAR*3) that
C contains the parameters for the Gaussian in the following
C order:
C
C PAR(0) -zerolevel
C PAR(1) -PAR(3) -int, pos. of peak, fwhm cmp. 1
C . .
C PAR(1+3*n)-PAR(3+3*n)-int, pos. of peak, fwhm cmp. n-1
C etc
C NPAR -I -number of components.
C Output parameters:
C DERIV -R -array defined as follows: DERIV(0:NPAR*3) that
C contains the partial derivatives in the following order:
C DERIV(0) -part. deriv of zerolevel
C DERIV(1)-DERIV(3) -part. derivs. of cmp. 1
C . .
C DERIV(1+3*n)-DERIV(3+3*n)-part. derivs. of cmp. n-1
C etc
C
C
C Use:
C DGAUSN gives the partial derivatives for the gaussian.
C Note that the Gaussian components are defined in terms of
C their Intensity, centre coordinate and Full Width at Half
C Maximum ( i.e. not in terms of amplitude and sigma ! ).
C
C
C Update History:
C 8- 7-85-PRR.-original document
C 16- 6-86-PRR.-converted for VAX8600
C 26- 2-92-PRR.-converted to new GIPSY
C#<
ENTRY DGAUSN(X,PAR,DERIV,NPAR)

N.determine number of components
NCOMP=(NPAR-1)/3

N.zero-level
DERIV(0)=1.0
N.loop on all components
FOR I=0,(NCOMP-1)
N.argument of exponential
IF (PAR(I*3+3) .NE. 0.0)
THEN
A=(X-PAR(I*3+2))/PAR(I*3+3)
N.calculate this component
GAUSS=A0/PAR(I*3+3)*EXP(-4*RLN2*A*A)
N.derivative of integral
DERIV(I*3+1)=GAUSS
N.derivative of centre coordinate
DERIV(I*3+2)=GAUSS*8*RLN2*A*PAR(I*3+1)/PAR(I*3+3)
N.derivative of FWHM
DERIV(I*3+3)=GAUSS*(8*RLN2*A*A-1)*PAR(I*3+1)/PAR(I*3+3)
ELSE
DERIV(I*3+1)=0.0
DERIV(I*3+2)=0.0
DERIV(I*3+3)=0.0
CIF
CFOR

RETURN
END