Документ взят из кэша поисковой машины. Адрес
оригинального документа
: http://www.astro.spbu.ru/DOP/3-REVS/KHLEB1/node1.html
Дата изменения: Fri Nov 19 12:06:57 2010 Дата индексирования: Mon Oct 1 23:25:12 2012 Кодировка: Поисковые слова: п п п п п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п п р п |
IntroductionThe general formulation of the problem of light scattering (diffraction) is rather simple. The field is incident on a scatterer of the volume , and creates the field inside the scatterer and an additional (diffraction) field outside it. Thus, from Maxwell's equations one should find the total field equal to inside and to outside and satisfying the boundary conditions on . Despite the simplicity of the scheme, a concrete solution of the problem essentially depends on the geometry of the scatterer and its structure. For instance, even for spherical scatterer with an anisotropic tensor of the refractive index, a general solution cannot be obtained in a closed form [7]. Therefore, in the theory of light scattering by small particles one has developed various methods whose applicability regions and efficiency depend on the concrete conditions. In this part we discuss the exact methods which include both the analytical and numerical approaches, since from a contemporary point of view an efficient numerical algorithm realized at a computer is equivalent to an analytical solution which as a rule also needs non-trivial calculations. |