Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.astro-soc.odessa.ua/Public-2014.pdf
Äàòà èçìåíåíèÿ: Tue Dec 16 00:19:01 2014
Äàòà èíäåêñèðîâàíèÿ: Sat Apr 9 22:25:48 2016
Êîäèðîâêà:

Ïîèñêîâûå ñëîâà: ï ï ï ï ï ï ï ï ï ï ï ï ï ï ï
ABSTRACTS
14-th Odessa International Astronomical Gamow Conference-School "Astronomy and beyond: Astrophysics, Cosmology and Gravitation, Cosmomicrophysics, Radio-astronomy and Astrobiology"
(Ukraine, Odessa, Chernomorka, 17-24 August, 2014)
100- ..p « », . .., , 27 2014 100- () , , . .. , . 1937 , . -. 1937 , .. , , . 1988 , . ( ) . , ( ), , . .. , . , , , , , 1940 , . , 6 (, , , , -), , . 1941-1945 1946 . .. 1 1984 .

17



: " " .. , , ­ ("" ( AM Her), "" (BY Cam), "" (DQ Her) ; (DO Dra), "" (TT Ari) (V368 Peg) ); ("" ""); ( EA, EB, EW), , ; ( V361 Lyr); ­ Sct, RR Lyr, RV Tau, (SR), (M). . "Inter ­ Longitude Astronomy". , , ( ) . ­, ­, ­, ­ . , (wavelet), , ­ . . 337 , ADS. 67P/­: ? .. 957 «» 20 2014 , , , "" , . 67P/- 20 21 Optical, Spectroscopic and Infrared Rem ote Imaging Syst em (OSIRIS). 67P 60 300 . 20 , , , . , 4 .. . M107, 1782 . 8.85 20900 , 720 67P/Churyumov-Gerasimenko 27 4 2014 , 5 . 2 . . , 67P/Churyumov-Gerasimenko 10- , 30 2014 OSIRIS (), 1300 . ( Rosetta a). , . , ­ . , . , 2014 . . , . 2014 . - . 300 , .. 26 . , , , . , . 4 11 2014 . 11 12.4 . ? , , , -

18


? , . . , , «», «». , - - , . () , , , 30 4 .. - , : " 67P/- . , . ­ . , , , , , . , . ? , Rosetta " - , . 11 2014 . , , . , 2 (. ). , , . Rosetta , , , 2 . , 22 4000 , 2 -1 -2 1986 . 67P/ -: , , . . , !

MAGNETIC FIELDS IN SOLAR ACTIVE REGIONS V.G.Lozitsky Taras Shevchenko National University of Kyiv, Astronomical Observatory lozitsky@observ.univ.kiev.ua, lozitsky_v@ukr.net Magnetic field measurements in solar active regions carry out on a base of the Zeeman effect. The simplest case of this effect is observed in great sunspots where the full Zeeman splitting in some spectral lines allows to measure local magnetic fields. According to direct data, magnetic field strength is here, as rule, 2200-2900 G, and sometimes 3000-4000 G. The strongest magnetic field in a sunspot was 6100 G. Substantial problems with measurements of local magnetic fields occur in the following cases: a) magnetic structures of subtelescopic size and small filling factor inside instrument's aperture, b) solar flares, where strong and rapid thermodynamical effects occur, with possible inversion from absorption to emissive manifestation of the Zeeman effect, and c) strong mixedpolarity and subtelescopic fields with absorption-emissive manifestations in spectral magnetosensitive lines. All above named cases is planned to discuss as well as the most important results obtained by different methods. In particular, the interest will be focused on problem of `superstrong' magnetic fields in flares (104 G). Existence of such magnetic fields follows from a presence in the flares of weak polarization effects even in spectral magnetosensitive lines with very small Lande factors, about 0.01. As to MHD theory, such extremely strong magnetic fields can not occur in the simplest case of untwisted magnetic fluxtube. However, such fields can arise up in some types of forcefree configurations with a multi-layered structure and alternation of opposite polarities. EXCESS OF BARIUM: INTRIGUING PROBLEM IN OPEN CLUSTERS T.V. Mishenina « » . .. Barium is a neutron capture element, which has a large scatter in its abundance values in open cluster stars and is typicall y overabundant relative to the sun. The origin of such overabundance is not clearly understood. We have determined the Y, La, Ba and Eu abundances for 13 open clusters using high-resolution spectra obtained with the UVES spectrograph at ESO Paranal. The available literature data for more than 50 OCs were also applied to study the reasons of the Ba overabundance. The determination errors and dependence of the elemental abundance on metallicity, age and kinematic parameters were analysed. The OCs' Ba overabundance-atage trend was confirmed. The observational data were discussed within the framework of stellar nucleosynthesis. EXOPLANETS AROUND K-GIANTS
1

Mkrtichian D.E.1,2 National Astronomical Research Institute of Thailand, Thailand 2 Crimean Astrophysical Observatory, Ukraine

I will present a review on recent discoveries of exoplanets around K-giants and Doppler spectroscop y

19


technique for their detection. I will discuss the distribution of periods of exoplanets and strong deficiency of shortperiod exoplanets in K-giant systems. K-giants periodic low amplitude radial velocit y variations caused by pulsations and spots should be also discussed. SEARCHING FOR THE HIGGS BOSON AT THE CERN LHC Christophe Royon CEN Saclay The Higgs mechanism in particle physics is briefly introduced and the recent Higgs boson discovery at the LHC by the ATLAS and the CMS experiments is presented. POST-INFLATIONARY PREHEATING Igor Rudenok 1, Yuri Shtanov 2,1, Stanislav Vilchinskii 1 Department of Physics, Taras Shevchenko National University, Kiev, Ukraine, 2 Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
1

Particle production in the background of an external classical oscillating field is a key process describing the stage of preheating after inflation. For sufficiently strong couplings between the inflaton and matter fields, this process proceeds non-perturbatively. Parametric resonance plays crucial role for bosonic fields in this case [1], and the evolution of the occupation numbers for fermions is non-perturbative as well [2]. In the Minkowski space, parametric resonance for bosons and non-perturbative effects for fermions would still persist even in the case of weak coupling. In particular, the energy density of created bosons would grow exponentially with time. However, the situation is quite different in the expanding universe. We give a simple demonstration [3] how the conditions of the expanding universe, specificall y, redshift of the field modes, lead to the usual perturbative expressions for particle production by an oscillating inflaton in the case of weak couplings. The results that we obtain are relevant and fully applicable to the Starobinsky model of inflation.
1. Y. Shtanov, J. H. Traschen, R. H. Brandenberger, Phys. Rev. D 51, 5438 (1995). 2. P. B. Greene, L. Kofman, Phys. Rev. D 62, 123516 (2000). 3. I. Rudenok, Yu. Shtanov, S. Vilchinskii, Phys. Lett. B 733, 193 (2014).

. Sp(NS) 12-24 (1874-2014 .), W(N-S) 22-24 (1992-2014 .), FI(N-S) 20-24 (1966-2010 .) [1-2] , « » . N S ( W-N-S), ( Sp-N-S) ( FI-N-S). N S . N-S . . N S , - .
1. .., ... . . » », , 2009, .121-135 2. .., .., .., ... - . , « - ­ 2013», -, 2013, 235-239.

.. - , (27,3 .). 11 . - , ­ . , , , .

­ .. «-4» , , , . . , -

20


MICROLENSING OF A DISTANT SOURCE BY A SYSTEM OF POINT AND EXTENDED MASSES Sliusar V.M. 1, Zhdanov V.I. 1, Alexandrov A.N. 1, Fedorova E.V. 1,2 1 Astronomical Observatory, Taras Shevchenko National University of Kyiv, Ukraine 2 Dept. of Astrophysics, Geophysics and Oceanography, University of LiÕge, Belgium We study a gravitational microlensing of a distant source by point and extended masses. The problem is of interest for testing models of dark matter that predict existence of extended structures having different masses and sizes (dark matter clumps). We discuss photometric and astrometric signatures that can distinguish the extended masses (clumps) from point-mass microlenses (stars). First, we consider the microlensing by separate circularly symmetrical clumps having different mass distribution. Then we consider statistical problems of microlensing by a system of st ochastically distributed point masses and extended clumps. The autocorrelation functions of the "observed" light curves are derived for different contributions of the clumps and the point masses.
1 2

, . 90 , III ­ (/ ­ 92). : . 1 , . 2 , , ai.zhuk2@gmail.com 2 CREST and NASA research centers, North Carolina Central University, Duhram, NC, U.S.A maxim.eingorn@gmail.com
1

.. 1,2, .. 1 , . .. ,

, 190 . : , . . . , , , , . . , . . 1, . . 1, 2, . . 3 1 « », . .., , 2 , . .., , 3 , , - () , . (, ) / . , , . , , , . , .

, , . - -2 , . . , . (10-100 ), .
1 2

.. 1,2, .. 1 , . .. ,

.

21


,

DIFFERENT APPROACHES FOR DARK MATTER HALOS OF CLUSTERS OF GALAXIES R. Brilenkov1, M. Eingorn2 and A. Zhuk3 Department of Theoretical Physics, Odessa National University, st. Dvoryanskaya 2, 65082 Odessa, Ukraine ruslan.brilenkov@gmail.com 2 CREST and NASA research centers, North Carolina Central University, Duhram, NC, U.S.A. maxim.eingorn@gmail.com 3 Astronomical Observatory, Odessa National University, st. Dvoryanskaya 2, 65082 Odessa, Ukraine ai.zhuk2@gmail.com
1

.. , , , : 10120 . , . , ­ ­ () =6,09·10-30/3, WMAP-9 PLANK. « » .. , , .. , .. . [13] . Rr1,3, . , « » RRr, . , , , , , , , , , .
1. ., .. Astrofizika 49 5 (2006) [Karachentsev I.D, Kashlbadze .G. Astrophysics 49 3 (2006)]. 2. .. 183 741­747 (2013). 3. .. // . -- 2013. -- 3. -- . 5­9.

To describe the density profile of dark matter halos of clusters of galaxies, we compare the approach based on the Schwarzschild-de Sitter metric with a recently developed mechanical one (discrete cosmol ogy inside the cell of uniformity). In the first approach, the cosmological effects are completel y incorporated into the cosm ological constant, while in the second one the scale factor enters directly the corresponding equations. Hence, in the latter case we can take into account the effect on the density profiles not only the cosmological constant, but also other material components. Thus, we can evaluate how this dynamic impact is considerable and testable.

SCALAR PERTURBATIONS AND THE GALAXY ROTATION CURVE PROBLEM IN COSMOLOGICAL MODELS WITH Q UARK NUGGETS Maxim Brilenkov1, Maxim Eingorn2,3, Laszlo Jenkovszky4, Alexander Zhuk3 1 Department of Theoretical Physics, Odessa National University, st. Dvoryanskaya 2, Odessa 65082, Ukraine 2 CREST and NASA research centers, North Carolina Central University, Duhram, NC, U.S.A. 3 Astronomical Observatory, Odessa National University, st. Dvoryanskaya 2, 65082 Odessa, Ukraine 4 BITP, Academy of Sciences of Ukraine, 03680 Kiev, Ukraine; Wigner Research Centre for Physics, Budapest, Hungary Considering the Universe at the late stage of its evolution and deep inside the cell of uniformity, we investigated the compatibility of quark-gluon nuggets with the observations. Taking into account radiation, we considered the scalar perturbations of the FRW metrics due to inhomogeneities (galaxies, groups and clusters of galaxies) of dustlike matter as well as fluctuations of QNs and radiation. Our analysis indicates that cosmological models with QNs can be compatible with observations.

22


.. , , ­ . , , . , , , , n- , . COSMOLOGICAL PERTURBATIONS IN PRESENCE OF SCALAR FIELDS Burgazli A.Yu. 1, Eingorn M.V. 2, Zhuk A.I. 3 Department of Theoretical Physics, Odessa National University 2 North Carolina Central University Astronomical Observatory, Odessa National University
1

COSMOLOGICAL MODELS WITH NONLINEAR EQ UATIONS OF STATE Jenkovszky L.L. 1, Zhdanov V.I. 2 Bogoliubov institute for theoretical physics, Kiev, Ukraine Astronomical Observatory, Taras Shevchenko National University of Kyiv, Ukraine
1

2

3

Scenarios of the cosmological evolution are studied using general models of equation of state (EoS) having points where the specific enthalpy of the cosmological fluid vanishes. The investigation concerns known nonlinear EoS's used in dynamical Dark Energy models to describe very early Universe, and uses some ideas inspired by the phenomenological "quark bag" model. We present a general consideration of a large class of barotropic EoS's that admit, depending upon initial conditions, analogues of the ``Big Rip", as well as solutions describing exponential inflation followed by usual matter dominance. A classification of possible scenarios is proposed. We discuss some extensions to more general two-parametric EoS dealing with a preinflationary evolution and yielding stages with both increasing and decreasing energy density as a function of time. Possible cosmological scenarios with transitions from collapse to an expanding Universe or a closed oscillating one, without reaching a singularity are included.
1 2

We investigate the role of the scalar field assuming its presence at late stages of the Universe evolution together with dust presented by a system of an arbitrary number of gravitating masses (galaxies and their groups) and the cosmological constant in the framework of the theory of scalar cosmol ogical perturbations. In particular, we discuss the case of the homogeneous scalar field and its possibl e influence on the gravitational potentials representing metric perturbations. We also focus attention on the interconnection bet ween the astrophysical problem and the cosmological one in the scalar field presence. ENVIRONMENTAL PROPERTIES OF GALAXIES FROM SDSS VIA VORONOI TESSELLATION
1

.. 1, .. 2 , ,

2

Dobrycheva D.1, Melnyk O.2,3, Elyiv A.1,3, Vavilova I.1 Main Astronomical Observatory of National Academy of Sciences of Ukraine Astronomical Observatory, Taras Shevchenko National University of Kyiv 3 Dipartimento di Fisica e Astronomia, Universita di Bologna

The aim of our work was to compare the physical properties of SDSS DR9 galaxies in different local environment. For the definition of the environment density we used the Voronoi tessellation. We have constructed the 3D Voronoi tessellation in the space of sample and considered an inverse volume of Voronoi cell like a local density in the given area of the cell. It allowed us to inspect the morphology ­ density relation. We found that the early t ype galaxies locate in more denser environment.

() , . -, , , [1], , [2]. , .
1. .. . ­ .: , 1995. ­ 88 . 2. .., .., .. // 14- , 2014.

23


.., .., .. . .., , [1], . [2] -, , : , ( ), , . - , , , , , . 4- , , , , . , ( -), . , , , -. , .
1. .., .. . ­ : 2, 2006. ­ 493. 2. .., .., .. // 13- -, 2013.

­ , ­ .. - , , ( ), , . 4- , ( , ). , , , . . . .. , () (). , V0 . V0 . , , . , , , , . , . , [1], . , .
1. Oleinik V.P. Quantum theory of self-organizing electrically charged particles. Soliton model of electron. // Proceedings of the NATO-ASI "Electron theory and quantum electrodynamics. 100 years later." ­ N.-Y.: Plenum Press, 1997. ­ P. 261-278.

.. . .., , () , , , : -

24


.. , , : , , ­ . [1], , ; . , , () [2]. ­ , . , , , , . , , , , . , , , .
1. . . ­ .: «», 1987. ­ . 33­34. 2. Oleinik V.P. The Problem of Electron and Superluminal Signals. (Contemporary Fundamental Physics) (Nova Science Publishers, Inc., Huntington, New York, 2001), 229 pages.

, - . , PF [4]. : , . 492 PF.
1. 2. 3. 4. Panko E., Flin P. // J. Astr. Data, 2006, V. 12, P. 1. Bautz P., Morgan W.W. // ApJ, 1970, V. 162, L.149. Abell G.O., Corwin H.G., Olowin R.P. // ApJS, 1989, V.70, P. 1. Panko, E. // 2013. Odessa Astronomical Publication, 2013, V. 26 P. 90.

THE ORIENTATIONS OF GALAXIES IN PF RICH GALAXY CLUSTERS WITH DIFFERENT MORPHOLOGICAL TYPES Panko E. 1, Godlowski W. 2, Flin P. 3, Gotsulyak . 4 Nikolaev National University, Kalinenkov Astronomical Observatory, Nikolaev, Ukraine 2 Uniwersytet Opolski, Institute of Physics, Opole, Poland 3 Jan Kochanowski University, Institute of Physics, Kielce, Poland 4 Odessa National University, Astronomical Department, Odessa, Ukraine
1

PF . 1, . 2, . 2 1 . .., ..., 2 . .., , , . PF [1], , [2], [3] PF[1]. , 1745 PF, 50, ACO , , 579. -

The morphological types of galaxy clusters resulting from their outward appearance are physically related to the clusters and their member galaxies. Taking into account the Abell, Zwicky et al., Bautz-Morgan and Rood-Sastry schemes, we created the adopted morphological types based on concentration, flatness and BG positions [2, 3]. From concentration to the cluster center we selected C ­ compact, I ­ intermediate and O ­ open clusters. Flatness as sign of the presence of preferential direction or plane in cluster was noted as L ­ line or F ­ flat. Other peculiarities in clusters were noted as P. According the adopted scheme we determined the morphological types for 247 rich galaxy clusters of PF Catalogue [1]. Using the distributions of supergalactic position angle and polar and azimuthal angles of galaxies from Godlowski et al. [4] we found: 1. The direction of major axis of the best-fit ellipse for cluster (calculated in PF catalogue) is close to direction determined for L or F region; the difference bet ween these directions increases for O-type galaxy clusters. 2. The distributions of orientation of galaxies in the clusters differ for different morphological types: the number of random values of supergalactic position angle and polar angle of galaxies increase from C to O type. 3. The part of L and F clusters with random distributions of polar and azimuthal angles of galaxies is about 10%.
1. Panko, E., Flin, P. // J. Astr. Data, 2006, V. 12, P. 1. 2. Panko, E. // 2013. Odessa Astronomical Publication, 2013, V. 26 P. 90. 3. Panko, E., Bajan, K., Gotsulyak, A. // in: The Proceedings of the IAU Symposium 308 "The Zeldovich Universe: Genesis and Growth of the Cosmic Web". Eds. R. van de Weygaert, S. Shandarin, E. Saar & Jaan Einasto. 2014, in preparation. 4. Godlowski, W., Piwowarska, P., Panko, E., Flin, P. // Astrophys. J., 2010, V. 723, P. 985.

25


NEUTRINO IN GRAVITATIONAL FIELD Plyatsko R.M., Fenyk M.T. Pidstryhach Institute for Applied Problems in Mechanics and Mathematics of National Academy of Sciences, Ukraine The spin-gravity coupling for a highly relativistic neutrino with nonzero mass according to the classical MathissonPapapetrou [1] and general relativistic Dirac equations is considered. It is stressed that the behavior of a neutrino in the highly relativistic regime in the gravitational field is significantly different from usual situations [1, 2]. Possible corrections to the known Dirac equation for more adequate description of neutrinos in strong gravitational fields is considered. Some numerical estimates are presented.
1. Mathisson M. // Acta Phys. Pol. 1937. V. 6. No.3. 163. 2. Plyatsko R.M., Fenyk M.T. // Phys. Rev. D, 2012. V. 85. 104023. 3. Plyatsko R.M., Fenyk M.T. // Phys. Rev. D, 2013. V. 87. 044019.

tion. One of the methods for studying the space-time near black holes is the motion analysis of test particles. In this study, we revealed the dependence of coordinate time of the fall of massive particles from the polar angle. The coordinate time increases with a decrease in the polar angle, i.e. the astronaut falling in the equatorial plane, will fall faster than the astronaut falling near the poles. However, when approaching the horizon, the coordinate time of the particles located in different planes, will tend to infinity. From what has been said, we can conclude that the spherical at infinity shell falling into a black hole will be deformed and at some instant it will take an ellipsoidal shape with the major axis parallel to the axis of rotation. But approaching the horizon, the shell will again become spherical. From the standpoint of proper time, there will be a similar situation, except the situation occurring proximately at the horizon. Considering the proper time of the particles, the shell will cross the horizon in the deformed state.
1

() ­ Z . . - , , , . , , , . , N~105. , : t = 1013 . :
t ­ R ­ N ­ - z ­

..1, ..2, ..1 , 2 CREST and NASA Research Centers, North Carolina Central University, Durham, North Carolina, U.S.A.

10 10 10 10 10 10

18 17 16 15 14 13



10 10 10 10 10 10

28 27 26 25 24 23



105 104 103 102 10 1

0z1 z = 10 z = 10 z = 10
2 3

FALLING THE SPHERICALLY SYMMETRICAL SHELL IN THE KERR METRIC Rasulova A.M. Herzen State Pedagogical University of Russia, St.Peterburg Now, in connection with the study of active galactic nuclei, the investigation of the Einstein's equation static solutions is relevant. The most physically real solution from stationary ones is the Kerr's solution, which takes into account the intrinsic angular momentum of body rota-

, , , CP- . , , , , . , « ­ » , , , , (, ) « » (, , ). , , , , («») (, ), . , , , , , , . , , - , -

26


, , . CREATION OF 2-5 AND 5-10 keV SKY MAPS USING XMM-NEWTON ARCHIVAL OBSERVATIONS AND THEIR APPLICATION TO STUDY OF EXTRAGALACTIC X-RAY BACKGROUND Savchenko D.O., Iakubovskyi D.A. Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine Sky maps are powerful visualization tools for quicklook analysis of extended sources. An example of such map for X-ray astronomy is all-sky map in 0.1-2.4 keV band made by ROSAT X-ray satellite [1] observations. In this talk, we present the new sky maps in two energy bands ­ 2-5 and 5-10 keV (complementary to ROSAT data) obtained using publicly available data of the MOS camera on-board XMM-Newton X-ray observatory [2]. We used more than 4100 observations with total cleaned exposure of about 80 Msec. Special attention is paid to quantitative analysis of faint extended regions. The obtained maps are included to web-interface of Virtual Roentgen and Gamma-Ray Observatory in Ukraine, http://skyview.virgoua.org. We also discuss the applications of such a maps to study of physical properties of hard X-ray background, including Fe Kalpha line tomography of large-scale structure proposed in the paper [3].
1. S.L. Snowden et al., ApJ 454 (Dec., 1995) 643 2. D.O. Savchenko, D.A. Iakubovskyi "Creation of 2-5 and 510 keV sky maps using XMM-Newton archival observations", submitted to AASP 3. HÝtsi, G.; Gilfanov, M.; Sunyaev, R., Astronomy & Astrophysics, Volume 547, id.A21 12 pp.

(- ). , , ( ). , , . , , .
1. . . // , 2002, .: . 234 . 2. .. // , 2007, .: , . 486 . 3. .., .., .. // , 2014.

DETERMINATION OF DARK MATTER TYPE BY X-RAY SOURCES STATISTICS Tugay A. Taras Shevchenko Kyiv National University, Astronomy and Space Physics, tugay.anatoliy@gmail.com Current cosmological model includes cold dark matter, which consist of massive nonrelativistic particles. There are also some observational and theoretical evidences for warm dark matter. The existence of warm DM can be examined by measuring of density profiles of galaxy clusters and accurate counting of dwarf galaxies. In this work I suppose that DM haloes are well traced by X-ray gas in clusters, groups, pairs and even single galaxies. The t ype of DM is inspected with Xgal sample of 5021 X-ray emitting galaxies observed by XMM-Newt on. Selection bias of this sample is also analyzed. . . 1, ..2, . . 3 « », . .., , , . .., , , ,
1

.. . .. . , . .. , . .. , [1,2], , , . . () , , , [3]. - ,

2 3

5- - , , . , . , , . , , .

27



. . . .. , . , SEGUE, RAVE , , Gaia. RAVE SEGUE. RAVE . ( ) , [1]. SEGUE. , [2] 9 . , . , , [3].
1. Golubov O., Just A., BienaymÈ O., Bland-Hawthorn J., Gibson B. K., et al. // A&A, 2013. V. 557, p. 92 2. Sofue Y., Honma M., Omodaka T. // PASJ, 2009. V. 61, p. 283 2. Golubov O. Modelling the Milky Way Disc (PhD thesis) -- Heidelberg, 2012

- 1995, 2003 2005 . , . 2003 2005 1995 . . EXPLOSIVE NUCLEOSYNTHESIS AT STRONG MAGNETIC FIELD Kondratyev V. Taras Shevchenko National University of Kyiv, Physics Department, vkondrat@i.ua Effect of strong magnetic field on synthesis of chemical elements is considered at condi-tions of nuclear statistical equilibrium. Possibility to employ produced radion uclides to probe the transient ultra-magnetized astrophysical plasma in supernovae and near to neutron stars is analyzed. For iron group nuclides the magnetic modification of nuclear structure shifts a maximum of nucleosynthesis products towards smaller mass numbers approaching titanium. Signals of 44Ti radioactive deca y in the gammaspectra of the supernova remnant Cassiopeia A are revealed from the Integral IBIS/ISGRI observational data. The determined gamma-ray fluxes for 44Sc* lines with energies 67.9 keV and 78.4 keV correspond to initial 44Ti volume (3.3+0.9-0.7).10-4 solar masses that corroborates magnetic enhancement of isotope production at a field constrained on conditions of supernova explosion.

.., .. . . .. , , , , (low/hard high/soft). , 30-40 . , .. , .

HIP 13962, , , PSRJ0826+2637 ..1, ..2, ..3, ..1, ..1 1 , , , , 143-747, 3 Main Astronomical Observatory of NAS of Ukraine, Kyiv, Ukraine

2

IP 13962 (spectraltypeG0Ia), , PSRJ0826+2637 (The Origin of the Young Pulsar PSR J0826+2637 and Its Possible Former Companion HIP 13962, N.Tetzlaff, B.Dincel, R.Neuhaeuser, V.V.Kovtyukh, MNRAS, 2014). ,

28



1

.. 1, .. 2 « » . .. 2 . ..

, , . . « . ... . , . « » (https://bitbucket.org/leonidsat/simvso/get/currev.zip) -. , , , . . Python [1], , framework PyQt [2] guiqwt [3]. « » .
1. https://www.python.org/ 2. http://www.riverbankcomputing.com/software/pyqt/intro 3. https://code.google.com/p/guiqwt/

g , ( ) , . . , . DECH 20 . 17 NGC 6752, prg . EW WIDTH-9 .

: .. . .. . , , H, ( ) . "" H. , , ­ "" " . .

..1, ..1, ..2, ..1 , , 2 , , 143-747,

1

RG NGC 6752 .. . . .. , 17 NGC 6752. Teff g ­ . : Teff ubvy,

, (1998) 30 000 . .

29



1

..2, ..1, ..1 , , 2 , , 143-747,

Pup VLT IUE, 1.8 . 56 , Pup Am-Fm . B-F. 1949 . , 13.6 24.6 , . . ..1, ..2,3 , 2 . .. ,
1

. () , , , . , . [13], , , [7, 8]. , . , , , [4, 9].
1. Andrews S.M. & Willams J.P. // Astrophys. J., 2005. V. 631. P. 1134. 2. Carpenter J. at al. // Astrophys. J. Suppl. Ser., 2009. V. 181. P. 197. 3. Chiang E.I. & Goldreich P. // Astrophys. J., 1997. V. 490. P. 368. 4. Scholz A. et al. // Astrophys. J., 2007. V. 660. P. 1517. 5. Stamatellos D. & Whitworth, A.P. // Mon. Not. Roy. Astron. Soc., 2009. V. 392. P. 413. 6. Vorobyov E. I. & Basu S. // Astrophys. J., 2010. V. 719. P. 1896. 7. Zakhozhay O.V. // Radio Physics and Radio Astronomy, 2011. V. 2. 2. P. 125. 8. Zakhozhay O.V. // Radio Physics and Radio Astronomy, 2011. V. 2. 3. P. 211. 9. Zakhozhay V. A. et al. // Kinematics and Physics of Celestial Bodies, 2011. V. 27. 3. P. 140.

3

, . [3], , [5, 6]. , , - . , . .

30


« » ( ..)
..1, ..2 , 2 « »,
1

. "MULTI ­ COLUMN VIEWER" (MCV)
1

.. 1