Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.astronomy.net/forums/blackholes2/messages/4927.shtml
Дата изменения: Unknown
Дата индексирования: Sun Apr 10 02:35:03 2016
Кодировка:

Поисковые слова: п п п р п р п р п р п р п р п р п р п
Brilliant! Thanks - an Astronomy Net Blackholes2 Forum Message
Back to Home

Blackholes2 Forum Message

Forums: Atm · Astrophotography · Blackholes · Blackholes2 · CCD · Celestron · Domes · Education
Eyepieces · Meade · Misc. · God and Science · SETI · Software · UFO · XEphem
RSS Button

Home | Discussion Forums | Blackholes II | Post
Login

Brilliant! Thanks

Forum List | Follow Ups | Post Message | Back to Thread Topics | In Response To
Posted by Alan on May 24, 2004 09:41:22 UTC

Thanks for those links Rowanda.

Now I get it (what Cahill is on to).

Haven't got a computer or internet but from your references I can see thanks to something I found in a book.

The Michelson Morley experiment, I read, did not in fact produce a nil result. Nor did later versions of the experiment.

It produced a small discrepancy that was dismissed by some as experimental error.

My interpretation of the MM experiment was that it did not prove the speed of light was constant in all directions because it could not see direction.

The experiment splits a light beam into a four-way right-angled scenario. People assume that the space containing the experiment is rigid (or 4-D grid space-time with fixed scale.
(A 4-D space with time condensed as a 3/3 frequency (a light beam).

A split then recombined light beam against a "light-beam" space doesn't know where it went or what direction only that it went somewhere inside itself. So it is like a self-referent nano-structure.

The experiment defines 4-D against an assumed 4-D rendering direction invisible....except that direction is slightly defined by the experiment due to internal direction: as the experiment has scale and an outer boundary; direction is locally defined by lines pointing inwards to the center of the experiment.

The sum of many compared experiments locally defined scale-collapse inwards (their internal direction)(so no wonder Cahill talks of "smart nano-structures") would give "other ways the experiments COULD generate mutual space.

This gives a global "ghost" Michelson Morley experiment involving all little Michelson Morley experiments: its sense of direction is a map of where each experiment is reference each other.

This gives "background radiation" concealed within the complementarity of all the MM experiments. One lone MM experiment would give a perspective on the other posibile MM experiments as a reflection of "outer space" through inner space.

Ayattempt to group some MM experiments together will generate a "scale of scale" constant if described by nill-scale (mathematics). Can call that "Planck's constant".

Can compare MM groups and conserve your Planck constant by blowing quantum foam (math in math) with a Hubble constant (expansion of your MM containing universe via contraction of your MM's definition space due to Planck:Planck shrinkage (or conserve your Planck:Planck call it "Neutron star" and have time dilation (to make the shrinking gauge look like it isn't shrinking you have to imagine stretching time (stretching your reference space against which you calibrate your object)

Fine structure constant: fine structure suggests a deal between locally self-referent items (such as MM experiments).

To hold a group of MM's in a constant fine mutual room from the swappability potential among their internal spaces: requires looking at their mutual definition of mass (of internal room to move): this is called "inertia".

To see "mass" and "inertia" would require a deal )a constant) of fine-structure: that is a map of locality of the MM's.

To describe a fine structure constant in mathematics would require, since math treats locality and map as collapsed (by assuming numbers are equal) breaking math into two groups, allowing the MM's localities to be non-local in a complementary superposition of alternative maps.

This gives the impression of two universes colliding; thus of gravitational waves (but to describe these requires a quantum foam background: real numbers.

To see a mutual map from superposed maps (to have a global positioning system) would require in-flowing the non-local MM's (making them more local).

Self-referential noise:

Math: 1+ 1 = 2 then 2 + 1 = 3 etc. how know the ones are equal-sized? By going back in time and re-defining the first two ones as thirds of the new space that includes a new one.

---dolphin




Follow Ups:

    Login to Post
    Additional Information
    Google
     
    Web www.astronomy.net
    DayNightLine
    About Astronomy Net | Advertise on Astronomy Net | Contact & Comments | Privacy Policy
    Unless otherwise specified, web site content Copyright 1994-2016 John Huggins All Rights Reserved
    Forum posts are Copyright their authors as specified in the heading above the post.
    "dbHTML," "AstroGuide," "ASTRONOMY.NET" & "VA.NET"
    are trademarks of John Huggins