Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.astronomy.com/news/2013/08/ultracold-big-bang-experiment-simulates-evolution-of-early-universe
Äàòà èçìåíåíèÿ: Unknown
Äàòà èíäåêñèðîâàíèÿ: Sun Apr 10 09:50:08 2016
Êîäèðîâêà: ISO8859-5

Ïîèñêîâûå ñëîâà: ï ï ï ï ð ï ð ð ï ï ð ï
Ultracold Big Bang experiment simulates evolution of early universe | Astronomy.com
Tonight's Sky
Sun
ò??
ò??
Sun
Moon
ò??
ò??
Moon
ò??
ò??
Mercury
ò??
ò??
Mercury
ò??
Venus
ò??
ò??
Venus
ò??
Mars
ò??
ò??
Mars
ò??
Jupiter
ò??
ò??
Jupiter
ò??
Saturn
ò??
ò??
Saturn
ò??

Tonight's Sky ò?? Change location

OR

Searching...

Tonight's Sky ò?? Select location

Tonight's Sky ò?? Enter coordinates

ÒÀ '
ÒÀ '

Ultracold Big Bang experiment simulates evolution of early universe

Scientists used cesium atoms to better understand how structure evolved in the infant universe.
RELATED TOPICS: COSMOLOGY | BIG BANG
Cheng Chin in lab
Professor Cheng Chin and his University of Chicago associates have simulated the impossibly hot conditions that followed the Big Bang within an ultracold vacuum chamber in his sub-basement laboratory in the Gordon Center for Integrative Science. // Jason Smith
Physicists have reproduced a pattern resembling the cosmic microwave background (CMB) radiation in a laboratory simulation of the Big Bang, using ultracold cesium atoms in a vacuum chamber at the University of Chicago.

“This is the first time an experiment like this has simulated the evolution of structure in the early universe,” said Cheng Chin, a professor at the University of Chicago.

Chin pursued the project with Chen-Lung Hung from the California Institute of Technology and Victor Gurarie from the University of Colorado, Boulder. Their goal was to harness ultracold atoms for simulations of the Big Bang to better understand how structure evolved in the infant universe.

The CMB is the echo of the Big Bang. Extensive measurements of the CMB came from the orbiting Cosmic Background Explorer (COBE) in the 1990s and later from the Wilkinson Microwave Anisotropy Probe (WMAP) and various ground-based observatories, including the University-of-Chicago-led South Pole Telescope collaboration. These tools have provided cosmologists with a snapshot of how the universe appeared approximately 380,000 years following the Big Bang, which marked the beginning of the universe.

According to these new results, a cloud of atoms chilled to a billionth of a degree above absolute zero, –459.67° Fahrenheit (–273.15 Celsius), in a vacuum chamber may display phenomena similar to those that unfolded following the Big Bang, Hung said.

“At this ultracold temperature, atoms get excited collectively. They act as if they are sound waves in air,” he said. The dense package of matter and radiation that existed in the early universe generated similar sound-wave excitations, as revealed by COBE, WMAP, and the other experiments.

The synchronized generation of sound waves correlates with cosmologists’ speculations about inflation in the early universe. “Inflation set out the initial conditions for the early universe to create similar sound waves in the cosmic fluid formed by matter and radiation,” Hung said.

Big Bang’s rippling echo
The sudden expansion of the universe during its inflationary period created ripples in space-time in the echo of the Big Bang. One can think of the Big Bang, in oversimplified terms, as an explosion that generated sound, Chin said. The sound waves began interfering with each other, creating complicated patterns. “That’s the origin of complexity we see in the universe,” he said.

These excitations are called Sakharov acoustic oscillations, named for Russian physicist Andrei Sakharov, who described the phenomenon in the 1960s. To produce Sakharov oscillations, Chin’s team chilled a flat smooth cloud of 10,000 or so cesium atoms to a billionth of a degree above absolute zero, creating an exotic state of matter known as a 2-D atomic superfluid.

Then they initiated a quenching process that controlled the strength of the interaction between the atoms of the cloud. They found that by suddenly making the interactions weaker or stronger they could generate Sakharov oscillations.

The universe simulated in Chin’s laboratory measured no more than 70 microns in diameter, approximately the diameter of a human hair. “It turns out the same kind of physics can happen on vastly different length scales,” Chin said. “That’s the power of physics.”

Chin’s goal is to better understand the cosmic evolution of a baby universe, the one that existed shortly after the Big Bang. It was much smaller than it is today, having reached a diameter of only 100,000 light-years by the time it had left the CMB pattern that cosmologists observe on the sky today.

In the end, what matters is not the absolute size of the simulated or the real universes, but their size compared to characteristic length scales governing the physics of Sakharov oscillations. “Here, of course, we are pushing this analogy to the extreme,” Chin said.

380,000 years versus 10 milliseconds
“It took the whole universe about 380,000 years to evolve into the CMB spectrum we’re looking at now,” Chin said. But the physicists were able to reproduce much the same pattern in approximately 10 milliseconds in their experiment. “That suggests why the simulation based on cold atoms can be a powerful tool,” he said.

Hung noted that Sakharov oscillations serve as an excellent tool for probing the properties of cosmic fluid in the early universe. “We are looking at a 2-D superfluid, which itself is a very interesting object. We actually plan to use these Sakharov oscillations to study the property of this 2-D superfluid at different initial conditions to get more information,” he said.

The research team varied the conditions that prevailed early in the history of the expansion of their simulated universes by quickly changing how strongly their ultracold atoms interacted, generating ripples. “These ripples then propagate and create many fluctuations,” Hung said. He and his co-authors then examined the ringing of those fluctuations.

Today’s CMB maps show a snapshot of how the universe appeared at a moment in time long ago. “From [the] CMB, we don’t really see what happened before that moment, nor do we see what happened after that,” Chin said. “In our simulation, we can actually monitor the entire evolution of the Sakharov oscillations,” Hung said.

Chin and Hung are interested in continuing this experimental direction with ultracold atoms, branching into a variety of other types of physics, including the simulation of galaxy formation or even the dynamics of black holes.

“We can potentially use atoms to simulate and better understand many interesting phenomena in nature,” Chin said. “Atoms to us can be anything you want them to be.”
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
asy_gravitational_eguide

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook