Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.astronomy.com/news/2012/06/planet-rise---alien-world-looms-large-in-its-neighbors-sky
Äàòà èçìåíåíèÿ: Unknown
Äàòà èíäåêñèðîâàíèÿ: Sun Apr 10 09:06:27 2016
Êîäèðîâêà: ISO8859-5

Ïîèñêîâûå ñëîâà: ï ï ï ï ï ï ï ï ï ï
Planet rise: Alien world looms large in its neighbor's sky | Astronomy.com
Tonight's Sky
Sun
ò??
ò??
Sun
Moon
ò??
ò??
Moon
ò??
ò??
Mercury
ò??
ò??
Mercury
ò??
Venus
ò??
ò??
Venus
ò??
Mars
ò??
ò??
Mars
ò??
Jupiter
ò??
ò??
Jupiter
ò??
Saturn
ò??
ò??
Saturn
ò??

Tonight's Sky ò?? Change location

OR

Searching...

Tonight's Sky ò?? Select location

Tonight's Sky ò?? Enter coordinates

ÒÀ '
ÒÀ '

Planet rise: Alien world looms large in its neighbor's sky

The solar system of Kepler-36 contains the two closest planets scientists have ever found.
Kepler36c
In this artist's conception, a "hot Neptune" known as Kepler-36c looms in the sky of its neighbor, the rocky world Kepler-36b. The two planets have repeated close encounters, experiencing a conjunction every 97 days on average. At that time, they are separated by less than 5 Earth-Moon distances. Such close approaches stir up tremendous gravitational tides that squeeze and stretch both planets, which may promote active volcanism on Kepler-36b. Credit: David A. Aguilar (CfA)
Few nighttime sights offer more drama than the Full Moon rising over the horizon. Now imagine that instead of the Moon, a gas giant planet spanning three times more sky loomed over the molten landscape of a lava world. This alien vista exists in the newly discovered two-planet system of Kepler-36.

"These two worlds are having close encounters," said Josh Carter from the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Massachusetts.

"They are the closest to each other of any planetary system we've found," said Eric Agol of the University of Washington in Seattle.

Scientists spotted the planets in data from NASA's Kepler spacecraft, which can detect a planet when it passes in front of, and briefly reduces the light coming from, its parent star.

The newfound system contains two planets circling a subgiant star much like the Sun, except several billion years older. The inner world, Kepler-36b, is a rocky planet 1.5 times the size of Earth that weighs 4.5 times as much. It orbits about every 14 days at an average distance of less than 11 million miles (18 million kilometers).

The outer world, Kepler-36c, is a gaseous planet 3.7 times the size of Earth that weighs eight times as much. This "hot Neptune" orbits once each 16 days at a distance of 12 million miles (19 million km).

The two planets experience a conjunction every 97 days, on average. At that time, they are separated by less than five Earth-Moon distances. Since Kepler-36c is much larger than the Moon, it presents a spectacular view in its neighbor's sky. (Coincidentally, the smaller Kepler-36b would appear about the size of the Moon when viewed from Kepler-36c.) Such close approaches stir up tremendous gravitational tides that squeeze and stretch both planets.

Researchers are struggling to understand how these two different worlds ended up in such close orbits. Within our solar system, rocky planets reside close to the Sun while the gas giants remain distant.

Although Kepler-36 is the first planetary system found to experience such close encounters, it undoubtedly won't be the last. "We're wondering how many more like this are out there," said Agol.

"We found this one on a first quick look," said Carter. "We're now combing through the Kepler data to try to locate more."

This result was made possible with asteroseismology ò?? the study of stars by observing their natural oscillations. Sun-like stars resonate like musical instruments due to sound waves trapped in their interiors. And just like a musical instrument, the larger the star, the "deeper" are its resonances. This trapped sound makes the stars gently breathe in and out, or oscillate.

"Kepler-36 shows beautiful oscillations,ò?? said Bill Chaplin from the University of Birmingham in the United Kingdom. ò??By measuring the oscillations, we were able to measure the size, mass, and age of the star to exquisite precision. Without asteroseismology, it would not have been possible to place such tight constraints on the properties of the planets.ò??

0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
asy_gravitational_eguide

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook