Äîêóìåíò âçÿò èç êýøà ïîèñêîâîé ìàøèíû. Àäðåñ îðèãèíàëüíîãî äîêóìåíòà : http://www.astronomy.com/news/2011/11/study-of-clay-minerals-suggests-watery-martian-underground
Äàòà èçìåíåíèÿ: Unknown
Äàòà èíäåêñèðîâàíèÿ: Sun Apr 10 09:08:31 2016
Êîäèðîâêà: ISO8859-5

Ïîèñêîâûå ñëîâà: propulsion
Study of clay minerals suggests watery martian underground | Astronomy.com
Tonight's Sky
Sun
ò??
ò??
Sun
Moon
ò??
ò??
Moon
ò??
ò??
Mercury
ò??
ò??
Mercury
ò??
Venus
ò??
ò??
Venus
ò??
Mars
ò??
ò??
Mars
ò??
Jupiter
ò??
ò??
Jupiter
ò??
Saturn
ò??
ò??
Saturn
ò??

Tonight's Sky ò?? Change location

OR

Searching...

Tonight's Sky ò?? Select location

Tonight's Sky ò?? Enter coordinates

ÒÀ '
ÒÀ '

Study of clay minerals suggests watery martian underground

This finding has implications about whether life existed on Mars and how its atmosphere has changed.
A new NASA study suggests that if life ever existed on Mars, the longest-lasting habitats were most likely below the Red Planetò??s surface.

A new interpretation of years of mineral-mapping data, from more than 350 sites on Mars examined by European and NASA orbiters, suggests martian environments with abundant liquid water on the surface existed only during short episodes. These episodes occurred toward the end of hundreds of millions of years during which warm water interacted with subsurface rocks. This has implications about whether life existed on Mars and how its atmosphere has changed.

ò??The types of clay minerals that formed in the shallow subsurface are all over Mars,ò?? said John Mustard from Brown University in Providence, Rhode Island. ò??The types that formed on the surface are found at very limited locations and are quite rare.ò??

Discovery of clay minerals on Mars in 2005 indicated the planet once hosted warm, wet conditions. If those conditions existed on the surface for a long era, the planet would have needed a much thicker atmosphere than it has now to keep the water from evaporating or freezing. Researchers have sought evidence of processes that could cause a thick atmosphere to be lost over time.

This new study supports an alternative hypothesis that persistent warm water was confined to the subsurface and many erosional features were carved during brief periods when liquid water was stable at the surface.

ò??If surface habitats were short-term, that doesnò??t mean we should be glum about prospects for life on Mars, but it says something about what type of environment we might want to look in,ò?? said Bethany Ehlmann from the California Institute of Technology and NASAò??s Jet Propulsion Laboratory in Pasadena, California. ò??The most stable Mars habitats over long durations appear to have been in the subsurface. On Earth, underground geothermal environments have active ecosystems.ò??

The discovery of clay minerals by the OMEGA spectrometer on the European Space Agencyò??s Mars Express orbiter added to earlier evidence of liquid martian water. Clays form from the interaction of water with rock. Different types of clay minerals result from different types of wet conditions.

During the past five years, researchers used OMEGA and NASAò??s Compact Reconnaissance Imaging Spectrometer (CRISM) instrument on the Mars Reconnaissance Orbiter to identify clay minerals at thousands of locations on Mars. Clay minerals that form where the ratio of water interacting with rock is small generally retain the same chemical elements as the original volcanic rocks later altered by the water.

The study interprets this to be the case for most terrains on Mars with iron and magnesium clays. In contrast, surface environments with higher ratios of water to rock can alter rocks further. Soluble elements are carried off by water, and different aluminum-rich clays form.

Another clue is detection of a mineral called prehnite. It forms at temperatures above about 400ÒÀ Fahrenheit (200ÒÀ Celsius). These temperatures are typical of underground hydrothermal environments rather than surface waters.

ò??Our interpretation is a shift from thinking that the warm, wet environment was mostly at the surface to thinking it was mostly in the subsurface, with limited exceptions,ò?? said Scott Murchie from Johns Hopkins University in Laurel, Maryland.

One of the exceptions may be Gale Crater, the site targeted by NASAò??s Mars Science Laboratory mission. Launching this year, the Curiosity rover will land and investigate layers that contain clay and sulfate minerals.

NASAò??s Mars Atmosphere and Volatile Evolution Mission (MAVEN), in development for a 2013 launch, may provide evidence for or against this new interpretation of the Red Planetò??s environmental history. The report predicts MAVEN findings consistent with the atmosphere not having been thick enough to provide warm, wet surface conditions for a prolonged period.

Martian-underground
Impact cratering and erosion combine to reveal the composition of the martian underground by exposing materials from the subsurface. Image Credit: NASA/JPL-Caltech/JHUAPL
A new NASA study suggests that if life ever existed on Mars, the longest-lasting habitats were most likely below the Red Planetò??s surface.

A new interpretation of years of mineral-mapping data, from more than 350 sites on Mars examined by European and NASA orbiters, suggests martian environments with abundant liquid water on the surface existed only during short episodes. These episodes occurred toward the end of hundreds of millions of years during which warm water interacted with subsurface rocks. This has implications about whether life existed on Mars and how its atmosphere has changed.

ò??The types of clay minerals that formed in the shallow subsurface are all over Mars,ò?? said John Mustard from Brown University in Providence, Rhode Island. ò??The types that formed on the surface are found at very limited locations and are quite rare.ò??

Discovery of clay minerals on Mars in 2005 indicated the planet once hosted warm, wet conditions. If those conditions existed on the surface for a long era, the planet would have needed a much thicker atmosphere than it has now to keep the water from evaporating or freezing. Researchers have sought evidence of processes that could cause a thick atmosphere to be lost over time.

This new study supports an alternative hypothesis that persistent warm water was confined to the subsurface and many erosional features were carved during brief periods when liquid water was stable at the surface.

ò??If surface habitats were short-term, that doesnò??t mean we should be glum about prospects for life on Mars, but it says something about what type of environment we might want to look in,ò?? said Bethany Ehlmann from the California Institute of Technology and NASAò??s Jet Propulsion Laboratory in Pasadena, California. ò??The most stable Mars habitats over long durations appear to have been in the subsurface. On Earth, underground geothermal environments have active ecosystems.ò??

The discovery of clay minerals by the OMEGA spectrometer on the European Space Agencyò??s Mars Express orbiter added to earlier evidence of liquid martian water. Clays form from the interaction of water with rock. Different types of clay minerals result from different types of wet conditions.

During the past five years, researchers used OMEGA and NASAò??s Compact Reconnaissance Imaging Spectrometer (CRISM) instrument on the Mars Reconnaissance Orbiter to identify clay minerals at thousands of locations on Mars. Clay minerals that form where the ratio of water interacting with rock is small generally retain the same chemical elements as the original volcanic rocks later altered by the water.

The study interprets this to be the case for most terrains on Mars with iron and magnesium clays. In contrast, surface environments with higher ratios of water to rock can alter rocks further. Soluble elements are carried off by water, and different aluminum-rich clays form.

Another clue is detection of a mineral called prehnite. It forms at temperatures above about 400ÒÀ Fahrenheit (200ÒÀ Celsius). These temperatures are typical of underground hydrothermal environments rather than surface waters.

ò??Our interpretation is a shift from thinking that the warm, wet environment was mostly at the surface to thinking it was mostly in the subsurface, with limited exceptions,ò?? said Scott Murchie from Johns Hopkins University in Laurel, Maryland.

One of the exceptions may be Gale Crater, the site targeted by NASAò??s Mars Science Laboratory mission. Launching this year, the Curiosity rover will land and investigate layers that contain clay and sulfate minerals.

NASAò??s Mars Atmosphere and Volatile Evolution Mission (MAVEN), in development for a 2013 launch, may provide evidence for or against this new interpretation of the Red Planetò??s environmental history. The report predicts MAVEN findings consistent with the atmosphere not having been thick enough to provide warm, wet surface conditions for a prolonged period.

0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
asy_gravitational_eguide

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook