Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.astronaut.ru/bookcase/books/klv/text/02.htm
Дата изменения: Sun Jun 2 12:50:46 2013
Дата индексирования: Fri Feb 28 05:50:30 2014
Кодировка: Windows-1251

Поисковые слова: п п р п р п р п р п п п п п п р п р п п
Спутники Юпитера
СПУТНИКИ ЮПИТЕРА
 
Из множества спутников Юпитера, перечисленных в табл. 1, выделяются 4 галилеевых спутника, известных со времен Галилея. В табл. 1, где приведено 16 известных ныне спутников планеты, они занимают с 5-й по 8-ю строку. Это Ио (имя женского рода), Европа, Ганимед и Каллисто. Они выделяются большими размерами (от размеров Луны до размеров Меркурия) и близостью к планете. Известны еще более близкие к Юпитеру спутники: это 3 совсем маленьких тела, открытых за последние годы, и Амальтея, имеющая неправильную форму (ее размеры примерно 130х80 км). Вместе с ними галилеевы спутники образуют так называемую правильную систему, которая отличается компланарностью (расположением орбит спутников в плоскости экватора планеты) и почти круговой формой орбит. Если сравнить их с положением нашей Луны, то Ио находится на 10% дальше, а Каллисто-в 4,9 раза дальше Луны. Но из-за огромной массы Юпитера на один оборот вокруг планеты они затрачивают всего 1,8 и 16,7 сут.
 
Таблица 1
Спутники Юпитера

Название или обозначение

Радиус орбиты, тыс.км Орбитальн. период, сут Эксцентриситет орбиты Наклон. орбиты к экватору планеты, град. Радиус спутника, км. Год открытия

XVI (Метис)

127,96

0,295

(0)

(0)

20

1979

XV (Адрастея)

128,98

0,298

(0)

(0)

12х10х8

1979

Амальтея

181,3

0,498

0,003

0,45 

135х85х75

1892

Теба

221,4

0,675

0,013

(0,9)

55х45

1979

Ио

421,6

1,769

0,004

0,04

1815

1610

Европа

670,9

3,551

0,009

0,47

1569

1610

Ганимед

1070

7,155

0,002

0,21

2631

1610

Каллисто

1880

16,689

0,007

0,51

2400

1610

Леда

11094

238,7

0,148

26,1

(5)

1974

Гималия

11480

250,6

0,158

27,6

(90)

1904

Лиситея

11720

259,2

0,107

29

(10)

1938

Элара

11737

259,7

0,207

24,8

(40)

1904

Ананке

21200

631

0,17

147

(10)

1951

Карме

22600

692

0,21

164

(15)

1938

Пасифае

23500

735

0,38

145

(20)

1908

Синопе

23700

758

0,28

153

(15)

1914

Знакомство с системой Юпитера начнем именно с галилеевых спутников. Со времени их открытия они оставались одним из самых популярных объектов астрономических наблюдений. Но если бы астрономы тогда знали, какие чудеса таятся на этих небесных телах! Впрочем, начнем с небольшого отступления, касающегося галилеевых спутников.
История науки полна великолепных идей, поражающих своей простотой и изяществом. Одна из них относится к концу XVII в., когда определение скорости света становилось все более актуальной задачей. Идея принадлежала датскому астроному Оле Ремеру. Ремер сообразил, что движение галилеевых спутников Юпитера (других тогда не знали) можно использовать для определения скорости света. Параметры их движения уже тогда были хорошо известны. Взаимное положение спутников и их положение относительно Юпитера, которые легко рассчитать заранее, можно условно рассматривать как положение четырех стрелок неких воображаемых часов. Ход этих часов очень точен; в свое время отсутствие хороших хронометров даже подтолкнуло мореплавателей пользоваться этими небесными часами для нужд навигации.
Но идея, о которой мы рассказываем, красивее. Пусть взаимное положение 'стрелок'-спутников найдено, скажем, на момент противостояния (которые повторяются каждые 400 сут) и далее рассчитано на некоторое время вперед. Вскоре наблюдения покажут, что небесные часы... врут. Их отставание будет расти с каждыми сутками и на 200-е сутки достигнет 16,7 мин. Затем отставание станет уменьшаться и. постепенно исчезнет совсем. Нетрудно догадаться, в чем дело: 'часы-то идут точно, но когда наблюдатель вместе с Землей перемещается на противоположную от Юпитера сторону орбиты, он видит положение 'стрелок', которое соответствует моменту времени на 16,7 мин раньше, чем по его часам. Если он знает радиус земной орбиты, т. е. астрономическую единицу (149,6 млн. км), скорость света в его руках: 16,7 мин - время распространения света на 2 а. е.
К сожалению, астрономическая единица Ремеру была известна неточно, и скорость света им была определена с большой ошибкой. Но идея, несомненно, была очень красивой.
В наше время, наблюдение галилеевых спутников принесло новые проблемы, связанные прежде всего с Ио. Еще средствами наземной астрономии в пространстве вблизи Ио было обнаружено излучение натрия и некоторых других элементов, что не находило объяснения до начала космических исследований Ио.
На рис. 1 приведена схема орбит галилеевых спутников и Амальтеи, а также путь космического аппарата 'Пионер' относительно планеты и спутников. При сближении аппарата с Ио было сделано важное открытие, к которому мы теперь и перейдем.

 

Рис. 1. Схема спутниковой системы Юпитера

Ио. Краткая история исследований космоса полна забавных, а иногда и невеселых происшествий, недоразумений и неожиданных открытий. Постепенно возник некий фольклор, которым специалисты обмениваются при встречах. Часто он связан с неожиданностями в поведении космических аппаратов. Недаром в кругах исследователей космоса родилась полушутливая, полусерьезная формулировка закона Мерфи-Чизехолма: 'Все, что может испортиться, - портится. Все, что не может испортиться, портится тоже'. Одна из сугубо научных статей в журнале 'Сайенс' так и начиналась: 'В соответствии с законом Мерфи...' Но к счастью, бывает и наоборот. Случай, о котором мы расскажем, скорее относится к такому удивительному везению. Трудно сказать, сколько здесь правды, но научная канва этой истории вполне достоверна.
Точному знанию положения космического аппарата у далекой от Земли планеты способствуют не только средства радионавигации, но и передаваемые аппаратом телевизионные изображения, на которых видны спутники на фоне звезд. Получаемые относительные положения небесных тел вводятся в вычислительную машину, которая уточняет координаты аппарата.
Одна из легенд рассказывает, что когда 'Вояджер-1' приближался к Юпитеру, ЭВМ указала руководительнице эксперимента на ошибку во вводимой в ЭВМ магнитной ленте с записью изображения спутника Ио. Причина была непонятной, но в конце концов ученой удалось выяснить, что форма лимба Ио не соответствовала заложенным в ЭВМ представлениям о круглом небесном теле. Сбоку у Ио что-то выступало. Это 'что-то' впоследствии оказалось огромным газовым султаном, который поднимался на высоту около 250-300 км над действующим вулканом.
Следует сказать, что Ио давно удивляет астрономов. Мы уже говорили, что несколько лет назад вдоль орбиты Ио было обнаружено излучение кислорода, паров натрия и серы. Как сохраняется такой тор ('бублик') в пространстве? Вначале ученым показалось, что все объяснили телевизионные снимки Ио: 7-8 действующих вулканов на ее поверхности выбрасывают фонтаны газообразных веществ, поднимающихся на сотни километров. Бледно-оранжевый цвет некоторых участков поверхности Ио вызван, по-видимому, отложениями серы и сконденсированного сернистого газа. Если предположить, что часть продуктов извержений рассеивается в космосе, происхождение газового тора вдоль орбиты Ио находит объяснение.
Но дело в том, что Ио - довольно массивное небесное тело: его масса 8,92х1025 г (это на 20% больше массы Луны), а средняя плотность составляет 3,53 г/см3. Диаметр Ио 3620 км (Луны 3476 км). Расчеты показывают, что ускорение свободного падения на ее поверхности достаточно велико, 181 см/с2. Тяжелый сернистый газ, а также пары серы, выброшенные из вулканической кальдеры, из-за низкой температуры быстро конденсируются и в таком виде, как иней и снег, выпадают на поверхность Ио. Этот процесс опережает разрушение молекулы газа ультрафиолетовым излучением Солнца (фотодиссоциацию). В то же время ускорение свободного падения недостаточно, чтобы удержать такую атмосферу, как у Марса, хотя какие-то следы атмосферы Ио имеет.
Выброс газа на высоту несколько сотен километров требует скоростей истечения газа из жерла примерно 1 км/с. Высокой скорости истечения способствует ничтожная плотность атмосферы Ио: от 10 до 100 миллионов раз меньше, чем у поверхности Земли. По земным понятиям - это глубочайший вакуум. Но концентрация молекул не так уж мала, около 1011 см-3. У всех остальных спутников Юпитера, Сатурна и Урана, как и у планеты Меркурий, плотность атмосферы еще в миллиарды раз ниже. Попросту говоря, атмосферы у них нет. Исключение - спутник Сатурна Титан, о котором речь будет дальше. Отложим немного разгадку, как сера и натрий попадают в космос и образуют тор из нейтральных и ионизованных атомов и обратимся к удивительному механизму извержений на Ио.
Ио недостаточно велика, чтобы радиоактивный распад элементов в ее недрах вызвал сильный разогрев коры, как это происходит на Земле. Энергия для разогрева черпается совсем из другого источника: из приливных воздействий второго галилеева спутника, Европы, самого Юпитера и в небольшой степени третьего спутника - Ганимеда. Подобно тому как в атомах запрещены определенные сочетания состояний электронных оболочек, в системе Юпитера запрещены (хотя и по другим причинам) некоторые конфигурации (взаимные расположения) спутников. Как только Ио приближается к определенной точке относительно Европы и Ганимеда, влияние последних начинает искажать орбиту Ио. За каждый оборот Ио дважды изменяет орбиту, смещаясь радиально на 10 км 'вверх' и 'вниз'. Орбита становится не совсем круговой, хотя эксцентриситет всего 0,004. Ио имеет значительный приливный выступ (отличие от сферичности) и при движении вдоль орбиты испытывает сильную либрацию (покачивание), хотя, подобно другим галилеевым спутникам, находится в синхронном вращении, т. е. всегда обращена одной стороной к Юпитеру. 
Приливные силы изгибают литосферу Ио и разогревают ее подобно тому, как нагревается изгибаемая проволока. Благодаря приливным воздействиям в недрах Ио выделяется огромная энергия - 60-80 млн. МВт. По-видимому, она распределяется неравномерно, больше выделяется в приповерхностных слоях небесного тела. В результате рассеяния этой энергии движение всех трех тел постепенно замедляется, но происходит это чрезвычайно медленно.
Нечасто бывает, чтобы предсказание теории нашло подтверждение всего через 2 месяца, но в случае Ио было именно так. Ее вулканические извержения были предсказаны на основе анализа взаимных возмущений галилеевых спутников. Предсказание было опубликовано незадолго до сближения с Ио 'Вояджера'. Мощность, рассеиваемая в приливных возмущениях Ио, достигает 2 Вт/м2 - это в 30 раз больше тепла, чем выделяется через поверхность Земли. Дистанционные измерения температуры поверхности, которая при равновесии с получаемой от Солнца энергией должна составлять примерно 140 К в районе экватора Ио, привели к совсем удивительным результатам. Равнины, покрытые слоем белых отложений, имеют даже более низкую температуру, 130 К. Это понятно: высокое альбедо поверхности уменьшает количество поглощаемой энергии.
Вместе с тем около 2% поверхности занимают активные горячие пятна. Их насчитывается более 10. Температура в пятнах 310, 400 и даже 600 К, причем размеры пятен колеблются в пределах от 75 до 250 км. 'Вояджер-1' застал 8 активных гигантских извержений, места которых были отождествлены с горячими пятнами. Сблизившийся с Ио через 4 месяца 'Вояджер-2' обнаружил, что 7 из них все еще продолжают извергаться. 'Выключился' только один из наиболее крупных вулканов, получивший название Пеле (в честь бога вулканов). В 1979 г. в точке, которая оказалась вулканической кальдерой Пеле, была зарегистрирована наивысшая температура, 600 К.
Интересно отметить, что центр извержения почему-то темный, а в стороны распространяются оранжевые потоки - продукты извержений. По-видимому, они накапливаются в глубинных резервуарах расплавленных веществ, как это показывает схема на рис. 2. Есть признаки того, что продолжительность существования вулканической кальдеры тем больше, чем из более глубоких резервуаров происходит извержение.

 

Рис. 2. Резервуары жидкой серы и конденсата сернистого газа на Ио

Вулканы Ио делятся на несколько типов. Первые имеют температуру 350-400 К и скорость выброса газовых продуктов около 500 м/с. Высота газового султана достигает 100 км и более, а выпадающие осадки имеют белый цвет. Таких большинство. Вторые отличаются очень высокой температурой кальдеры, имеют скорость выбросов около 1 км/с и высоту султана до 300 км. Главная их особенность - темная кольцевая окантовка на расстояниях нескольких сотен километров от кальдер, К ним относится Пеле и найденные позднее Сурт и Атен. Кольцо газоконденсатной природы вокруг Пеле имеет характерную форму следа подковы диаметром около 1000 км, а отложения на поверхности составили эллипс размерами 950х1400 км. В центре извержения расположено несколько обширных плоскогорий с обрывистыми краями и разделяющей их широкой долиной. Вся поверхность имеет темные оттенки оранжевого и коричневого цветов. Лишь плоскогорье выделяется более светлой окраской.
Среди интересных гипотез имеется предположение о гейзерном характере извержений второго типа, когда происходит внезапный фазовый переход летучих веществ (жидкость - газ). Такой фазовый переход в глубинном резервуаре известен для земных вулканов, например, острова Св. Елены. Для сернистого газа переход должен происходить при температуре 400 К, а для серы примерно при температуре 700 К. Если принять эту гипотезу, малые султаны соответствуют выбросам с небольших глубин, большие - выбро