Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.altrs.narod.ru/Bluebook/D3_3_5.htm
Дата изменения: Unknown
Дата индексирования: Sat Apr 9 22:35:32 2016
Кодировка: UTF-8

Поисковые слова: п п п п р п р п р п р п р п р п р п р п р п
book
Максим Тарасенко
ВОЕННЫЕ АСПЕКТЫ СОВЕТСКОЙ КОСМОНАВТИКИ
3.3. Вспомогательные системы.

3.3.5. Исследовательские и калибровочные спутники

Довольно большое количество советских спутников, не связываемых с известными научными или народнохозяйственными программами, не удается отнести также ни к одной из рассмотренных выше военных категорий. Даже после отбрасывания уникальных пусков, которые могут относиться к различным прерванным проектам, остается более ста спутников, четко разделяющихся по орбитальным параметрам на несколько серий. Периодическая замена аппаратов в пределах каждой из них свидетельствует об осуществлении продолжительных программ, а отсутствие какого бы то ни было упоминания о их конкретном назначении заставляет предположить, что эти программы также носят военный характер.

В космической деятельности Министерства обороны США имеется ряд вспомогательных программ, носящих исследовательский характер. Они охватывают испытания и отработку оборудования для перспективных космических систем военного назначения, различные калибровочные устройства, зонды для измерения плотности атмосферы и т.п. Естественно ожидать существования подобных направлений и в советской программе, так что по крайней мере некоторые неотождествленные серии советских спутников могут предназначаться для решения аналогичных задач.

По этой причине в обзорах Исследовательской службы Конгресса США для советских спутников, не относящихся к вышеперечисленным военным категориям и не отождествленных как научные или прикладные, было введено понятие ?малые (minor) военные спутники?. Этот термин отражает вспомогательность их предполагаемого военного значения и отчасти подчеркивает их небольшие размеры, поскольку ?малые? спутники запускались легкими носителями ?Космос?.

Запуски с использованием носителей В-1 начались в 1964 г. на космодроме Капустин Яр, а с 1967 г. распространились также в Плесецк. Все такие спутники выводились на вытянутые орбиты, распадающиеся по высоте апогея на три группы: низкие (500?600 км), высокие (1200?2200 км) и промежуточные (800?870 км). Если запуски с Капустина Яра обеспечивали наклонения орбит 48,4?49 градусов, то с Плесецка низкоапогейные спутники выводились на орбиты с наклонением 71 градус, а высокоапогейные ? 82 градуса (см. табл. 3.11).

Орбиты каждого из этих типов применялись и для научных запусков (многие из которых были отождествлены как таковые лишь годы спустя), поэтому очень вероятно, что рассматриваемые спутники базировались на унифицированной конструкции, разработанной фирмой Янгеля и хорошо известной по первым спутникам серии ?Космос?.

Оптические измерения свидетельствовали, что спутники стабилизируются на орбите вращением, но никому из независимых наблюдателей не удавалось получить от них дешифруемые радиосигналы (в отличие от научных спутников, которые обычно сразу распознавались по телеметрии).

Малые высоты перигеев ? от 220 до 290 км ? ограничивали орбитальное существование запускаемых В-1 спутников считанными месяцами. Наиболее короткоживущими были низкоапогейные аппараты с периодом обращения около 92 минут, и спутники этой серии запускались 6?8 раз в год. В общей сложности на их долю приходится 63 из 98 запусков В-1, не отождествленных как научные.

Регулярность замен низкоорбитальных спутников свидетельствовала, что программа носит эксплуатационный, а не экспериментальный характер. О ее назначении высказывались самые различные гипотезы, от определения погодных условий в районах съемки фоторазведчиков, до ведения радиотехнической разведки и контроля за ядерными взрывами в космосе.

Однако для слежения за ядерными взрывами необходимо одновременное нахождение на орбите сразу нескольких спутников. Метеорологическое обеспечение фоторазведывательных полетов не требует такой скрытности связи. К тому же, как сказано выше, советские спутники оптической разведки используют собственные бортовые датчики облачности. Предположение об ведении радиотехнической разведки само по себе непротиворечиво, хотя для эффективности такой системы также желательно было бы иметь на орбите несколько спутников одновременно. Кроме того оно не очень увязывается с многолетним осуществлением таких запусков параллельно с существованием группировки спутников радиотехнической разведки, запускаемых носителями С-1.

Наиболее логичным кажется предположение [18], что данные спутники использовались для калибровки наземных радиолокационных станций и определения параметров верхней атмосферы.

С 1974 г. запуски на аналогичные орбиты стали осуществляться также с помощью более мощной ракеты С-1. В 1974?76 г. она заменила В-1 при наиболее редких запусках на высокоэллиптические орбиты с периодом обращения около 109 минут. Запуски на орбиты с апогеями 850?1000 км в 1977 г. прекратились вместе с использованием В-1 и два запуска С-1 в 1974 и 1976 гг. на близкие к этим орбиты с апогеями около 720 и перигеями 240?280 км не получили продолжения. Наиболее же массовая серия низкоапогейных запусков В-1 была в 1975?76 гг. сменена спутниками, выводимыми ракетами С-1 на околокруговые орбиты средней высотой около 495 километров и наклонением 65,8 градуса. До тех пор на такие орбиты выводились только мишени для спутникового перехвата, и поэтому запущенный в 1975 г. ?Космос-752? поначалу рассматривался как неиспользованная по каким-то причинам мишень.

Увеличение со временем количества ?неперехваченных мишеней?, а также расширение запусков и на другие наклонения, свидетельствовало о самостоятельной роли этих спутников, а синхронное прекращение пусков низкоапогейных спутников ракетами В-1 позволяет предположить преемственность двух программ.

Примерно половина запускаемых носителями С-1 низкоорбитальных ?малых? спутников, начиная с ?Космоса-816? в 1976 г., периодически отделяет во время полета небольшие объекты, снижающиеся значительно быстрее основного аппарата. Если сами спутники при начальной высоте орбиты около 500 км существуют по несколько лет, ?фрагменты? падают за несколько месяцев. Как правило, объекты появляются попарно и сбрасываются с основного аппарата симметрично, так что половина оказывается выше, а половина ниже его орбиты. Объекты обычно выпускаются небольшими группами на протяжении многих месяцев, причем отделение новой партии часто совпадает со сходом предыдущих с орбиты.

Фрагменты имеют радиолокационные сечения порядка 0,1 квадратного метра. Рассчитанные же по скорости их снижения баллистические коэффициенты составляют около 0,1 м /кг, что дает для массы каждого зонда около 1?2 кг [19], По всей видимости, объекты являются полыми без каких бы то ни было активных систем, а разница в баллистических коэффициентах говорит о различии их форм.

Слежение за такими пассивными зондами позволяет определять вариации плотности верхних слоев атмосферы, которая значительно, иногда многократно, меняется в зависимости от времени года, суток и состояния солнечной активности и влияет на точность управления полетами спутников и баллистических ракет.

Помимо этого, орбитальные мишени с точно известными радиолокационными характеристиками могут использоваться для калибровки радиолокационных станций, используемых в системе контроля космического пространства и предупреждения о ракетном нападении. В этом случае целесообразно использование мишеней разной формы, например, эталонных сфер и имитаторов радиолокационных характеристик реальных боеголовок. Использование космических мишеней для проверки радиолокационных средств для Советского Союза более актуально чем для США. США отрабатывают свои системы слежения на тихоокеанском атолле Кваджалейн с использованием реальных пусков МБР из Калифорнии, тогда как СССР лишен аналогичной возможности. Кроме того, в отличие от США, в СССР продолжается эксплуатация системы противоракетной обороны Москвы, что требует периодических учебных ?атак?.

С 1976 до 1983 г. предельное количество мишеней, отделяемых низкоорбитальными спутниками, составляло 24. Начиная с ?Космоса-1601? эта величина возросла до 28. В ряде случаев технические неполадки, видимо, препятствовали сбросу всех объектов, а иногда фиксировались фрагменты, могущие представлять собой конструктивные элементы основного аппарата.

С 1988 г. аналогичные спутники стали запускаться также носителями ?Циклон?. При этом использовались несколько более высокие орбиты со средней высотой 530 км и наклонениями 74 или 82,5 градуса, но характер орбитального поведения остался прежним. Первый спутник нового типа, ?Космос-1985?, отделил 36 объектов партиями по 2?6 штук на протяжении более чем двух лет.

Продолжении этой серии ?Космосом-2053? в 1989 и ?Космосом-2106? в 1990 г. позволяет предположить, что калибровочные пуски постепенно переключаются с носителя С-1 ?Космос? на ?Циклон?, подобно тому как это произошло с геодезическими спутниками.

Одновременно с этим неожиданно возобновились пуски ?малых? спутников на высокоапогейные орбиты. Запущенные с годичным интервалом ?Космос-2002? и ?Космос-2059? были в 1989 и 1990 гг. выведены на наиболее вытянутые их использовавшихся малыми спутниками орбиты с апогеем около 2300 км и перигеем всего 190 км. При таких низких перигеях оба упали в течение нескольких месяцев, но вскоре после запуска каждый отделил по 10 небольших объектов, просуществовавших около полутора месяцев.

Кроме того, в 1990 г. ?Космос-2098? был выведен на орбиту с апогеем 2000 км и перигеем около 400 км, использовавшуюся последний раз в 1983 г. В 1987 г. после 10-летнего перерыва ?Космос-1868? также вновь использовал ?среднеапогейную? орбиту высотой 280 на 710 км, а в 1991 на похожую орбиту высотой 200 на 780 км был выведен ?Космос-2164?.

Эпизодичность последних запусков делает более вероятным их экспериментальный характер. Однако если при использовании носителя В-1 низкие перигеи рабочих орбит могли диктоваться кратковременностью разгонного участка ее второй ступени, то сохранение этой же формы орбиты при примене нии РН С-1 свидетельствует о каком-то значении именно таких траекторий. Возможно, таким путем определяется вертикальный профиль параметров атмосферы и/или имитируется траектория полета МБР, апогей которой может достигать тысяч километров, а перигей находится ниже поверхности Земли.