|
ТРАНЗИТНЫЕ
ЭКЗОПЛАНЕТЫ
Вика
Воробьева
На данный
момент существует несколько методов поиска экзопланет (т.е. планет у
соседних звезд). Это:
1. Метод доплеровской спектроскопии (он же метод лучевых скоростей)
2. Наблюдения транзитов
3. Наблюдения событий микролинзирования
4. Прямое получение изображений экзопланет с помощью инфракрасных телескопов.
Метод доплеровской спектроскопии основан на том факте, что, строго говоря,
не планета вращается вокруг звезды, а и планета, и звезда вращаются
вокруг общего центра масс. Вращение звезды вокруг центра масс системы
"звезда + планета" приводит к тому, что линии в ее спектре периодически
смещаются то в одну, то в другую сторону. Скорость звезды, "наведенная"
планетой, оказывается порядка всего нескольких десятков или даже единиц
метров в секунду, однако прецизионные спектральные наблюдения позволяют
ее обнаружить. Именно методом доплеровской спектроскопии было открыто
большинство экзопланет.
Однако у этого метода есть и свой недостаток. Он позволяет измерить
только лучевую скорость звезды (скорость звезды вдоль луча зрения),
и ничего не говорит о ее тангенциальной скорости (скорости поперек луча
зрения). В зависимости от того, как ориентирована орбита экзопланеты,
полная скорость звезды может быть как близкой к лучевой (измеренной)
скорости, так и многократно превосходить ее. Соответственно, с помощью
метода доплеровской спектроскопии можно получить не истинную массу экзопланеты,
а лишь параметр m sin i (т.е. произведение массы планеты на синус угла
наклона ее орбиты к лучу зрения). Поскольку синус любого угла меньше
или равен единице, параметр m sin i имеет смысл минимальной массы экзопланеты.
|
С
помощью спектроскопических наблюдений можно узнать только лучевую
скорость звезды (красный вектор). Если наклонение плоскости орбиты
к лучу зрения (угол i) близок к нулю (планетная система наблюдается
"плашмя"), колебания лучевой скорости звезды также будут
близки к нулю даже при наличии массивной планеты. Если наклонение
близко к 90 градусам (планетная система наблюдается "с ребра"),
возможны т.н. транзиты - прохождение планеты по диску звезды. |
Метод
наблюдения транзитов основан на том, что при наблюдении планетной системы
"с ребра" планета, с точки зрения земного наблюдателя, может периодически
проходить по диску звезды, незначительно (обычно на 1-3%) ослабляя ее
блеск. Точные фотометрические наблюдения позволяют построить "световую
кривую" (график зависимости блеска звезды от времени) и найти период
планеты и ее радиус. К недостаткам метода наблюдения транзитов можно
отнести низкую вероятность транзитной конфигурации. При углах наклона
орбиты планеты, всего на 3-4 градуса отличающихся от 90 градусов, планета
"пройдет" выше или ниже диска звезды, и транзитов не будет.
Кроме того,
одного факта наблюдения транзита еще недостаточно, чтобы сказать, что
открыта именно экзопланета. Горячие гиганты, коричневые карлики и маломассивные
звезды главной последовательности имеют один и тот же размер, равный
1-1,5 диаметров Юпитера (но при этом разную массу и среднюю плотность).
Чтобы подтвердить планетную природу транзитного кандидата, необходимо
определить его массу из спектральных наблюдений звезды и убедиться,
что она не превышает 13 масс Юпитера.
Особенно
интересных результатов можно добиться, совмещая метод наблюдения транзитов
и метод доплеровской спектроскопии. Наблюдая одну и ту же звезду обоими
методами, можно найти как истинную массу, так и радиус экзопланеты,
а значит, и ее среднюю плотность, и вторую космическую скорость. Это
позволяет оценить химический состав планеты и физические условия на
ней.
На данный
момент (конец апреля 2008 года) известно 50 транзитных планет, 49 из
них являются горячими гигантами. Это:
CoRoT-Exo-1 b
CoRoT-Exo-2 b
CoRoT-Exo-4 b (CoRoT-Exo-3 b
- коричневый карлик)
CoRoT-Exo-5 b
GJ 436 b
HAT-P-1 b
HAT-P-2 b (она же HD 147506
b)
HAT-P-3 b
HAT-P-4 b (она же BD+36 2593
b)
HAT-P-5 b
HAT-P-6 b
HAT-P-7 b
HD 149026 b
HD 17156 b
HD 189733 b
HD 209458 b
Lupus-TR-3 b
OGLE-TR-10 b
OGLE-TR-111 b
OGLE-TR-113 b
OGLE-TR-132 b
OGLE-TR-182 b
OGLE-TR-211 b
OGLE-TR-56 b
SWEEPS-4
SWEEPS-11
TrES-1
TrES-2
TrES-3
TrES-4
WASP-1 b
WASP-2 b
WASP-3 b
WASP-4 b
WASP-5 b
WASP-6 b
WASP-7 b
WASP-8 b
WASP-9 b
WASP-10 b
WASP-11 b
WASP-12 b
WASP-13 b
WASP-14 b
WASP-15 b
XO-1 b
XO-2 b
XO-3 b
XO-4 b
XO-5 b
Свойства
этих планет (за исключением планет SWEEPS-4 и SWEEPS-11, данные для
которых еще слишком неточны) приведены в Таблице. Синим цветом выделен
единственный пока транзитный нептун (по температурному режиму - очень
теплый).
планета
|
большая
полуось, а.е.
|
масса,
масс Юпитера
|
радиус,
радиусов Юпитера
|
средняя
плотность, г/куб.см
|
вторая
космическая скорость, км/сек
|
CoRoT-Exo-1
b
|
?
|
1.3
|
1.65
+ 0.15
|
0.38
+ 0.10
|
53.4
+ 2.4
|
CoRoT-Exo-2
b
|
0.029
|
3.53
+ 0.24
|
1.43
+ 0.05
|
1.6
+ 0.2
|
94.6
+ 3.6
|
CoRoT-Exo-4
b
|
0.093
+ 0.0024
|
0.73
+ 0.1
|
1.17
+ 0.075
|
0.60
+ 0.12
|
47.6
+ 3.4
|
CoRoT-Exo-5
b
|
0.049
|
0.86
|
1.2
|
0.66
|
51
|
GJ
436 b
|
0.029
+ 0.002
|
0.07
+ 0.003
|
0.39
+ 0.04
|
1.56
+ 0.48
|
25.5
+ 1.4
|
HAT--P-1
b
|
0.055
+ 0.002
|
0.53
+ 0.04
|
1.36
+ 0.1
|
0.28
+ 0.06
|
37.4
+ 2.0
|
HAT--P-2
b
|
0.068
+ 0.002
|
8.2
+ 0.7
|
1.18
+ 0.16
|
6.6
+ 2.7
|
158
+ 13
|
HAT-P-3
b
|
0.039
|
0.61
+ 0.03
|
0.89
+ 0.05
|
1.06
+ 0.17
|
49.8
+ 1.9
|
HAT-P-4
b
|
0.045
+ 0.001
|
0.68
+ 0.04
|
1.27
+ 0.05
|
0.41
+ 0.06
|
44.0
+ 1.6
|
HAT-P-5
b
|
0.041
+ 0.001
|
1.06
+ 0.11
|
1.26
+ 0.05
|
0.66
+ 0.11
|
55.0
+ 3.1
|
HAT-P-6
b
|
0.052
+ 0.001
|
1.06
+ 0.12
|
1.33
+ 0.06
|
0.56
+ 0.05
|
53.5
+ 3.3
|
HAT-P-7
b
|
0.0377
+ 0.0005
|
1.776
+ 0.08
|
1.36
+ 0.2
|
0.93
+
0.41
|
68.8
+
5.3
|
HD
149026 b
|
0.042
|
0.36
+ 0.03
|
0.725
+ 0.03
|
1.25
+ 0.19
|
42.4
+ 2.0
|
HD
17156 b
|
0.15
|
3.08
|
1.15
+ 0.11
|
2.68
+ 0.77
|
98.5
+ 4.7
|
HD
189733 b
|
0.031
|
1.15
+ 0.05
|
1.156
+ 0.03
|
0.98
+
0.08
|
60.0
+ 1.3
|
HD
209458 b
|
0.045
|
0.69
+ 0.05
|
1.32
+ 0.25
|
0.40
+ 0.23
|
43.5
+ 5.0
|
Lupus-TR-3
b
|
0.0464
+ 0.0007
|
0.81
+ 0.18
|
0.89
+ 0.07
|
1.4
+ 0.4
|
57.4
+ 6.8
|
OGLE-TR-10
b
|
0.042
|
0.63
+ 0.14
|
1.26
+ 0.07
|
0.42
+ 0.12
|
42.6
+ 4.9
|
OGLE-TR-111
b
|
0.047
+ 0.001
|
0.53
+ 0.11
|
1.07
+ 0.06
|
0.57
+ 0.15
|
42.2
+ 4.6
|
OGLE-TR-113
b
|
0.023
|
1.32
+ 0.2
|
1.09
+ 0.03
|
1.34
+ 0.23
|
66.2
+ 5.2
|
OGLE-TR-132
b
|
0.031
+ 0.001
|
1.19
+ 0.13
|
1.13
|
1.09
+ 0.12
|
61.7
+ 3.4
|
OGLE-TR-182
b
|
0.051
+ 0.001
|
1.01
+ 0.15
|
1.13
+ 0.13
|
0.93
+ 0.35
|
56.9
+ 5.3
|
OGLE-TR-211
b
|
0.051
+ 0.001
|
1.03
+ 0.20
|
1.36
+0.18/-0.09
|
0.54
+ 0.24
|
52.4
+ 7.0
|
OGLE-TR-56
b
|
0.023
|
1.29
+ 0.12
|
1.3
+ 0.05
|
0.78
+ 0.12
|
59.9
+ 3.3
|
TrES-1
|
0.039
+ 0.001
|
0.61
+ 0.06
|
1.08
+ 0.03
|
0.64
+ 0.07
|
45.2
+ 2.3
|
TrES-2
|
0.037
+ 0.001
|
1.28
+ 0.09
|
1.24
+ 0.09
|
0.89
+ 0.20
|
61.1
+ 3.1
|
TrES-3
|
0.023
+ 0.001
|
1.92
+ 0.23
|
1.3
+ 0.08
|
1.16
+ 0.25
|
73.1
+
4.4
|
TrES-4
|
0.049
+ 0.002
|
0.84
+ 0.1
|
1.67
+ 0.1
|
0.22
+
0.045
|
42.7
+
2.8
|
WASP-1
b
|
0.038
+ 0.001
|
0.89
+ 0.2
|
1.44
+ 0.08
|
0.39
+ 0.11
|
47.3
+ 5.5
|
WASP-2
b
|
0.03
+ 0.01
|
0.88
+ 0.11
|
1.04
+ 0.06
|
1.03
+ 0.22
|
55.3
+ 3.8
|
WASP-3
b
|
0.03
|
1.83
|
1.38
|
0.92
|
69
|
WASP-4
b
|
0.023
|
1.27
|
1.44
|
0.58
|
57
|
WASP-5
b
|
0.027
|
1.6
|
1.13
|
1.45
|
71
|
WASP-6
b
|
0.044
|
0.5
|
1.3
|
0.30
|
37
|
WASP-7
b
|
0.057
|
0.86
|
0.88
|
1.67
|
59
|
WASP-8
b
|
0.079
|
2.23
|
1.17
|
1.84
|
83
|
WASP-9
b
|
0.031
|
2.3
|
1.3
|
1.38
|
80
|
WASP-10
b
|
0.037
|
3.06
|
1.29
|
1.88
|
93
|
WASP-11
b
|
0.047
|
0.47
|
0.94
|
0.75
|
42.5
|
WASP-12
b
|
0.021
|
1.12
|
1.68
|
0.31
|
49
|
WASP-13
b
|
0.052
|
0.37
|
0.99
|
0.50
|
37
|
WASP-14
b
|
0.0335
|
7.77
|
1
|
10.3
|
168
|
WASP-15
b
|
0.047
|
0.55
|
1.4
|
0.27
|
38
|
XO-1
b
|
0.049
+ 0.001
|
0.9
+ 0.07
|
1.18
+ 0.04
|
0.72
+ 0.09
|
52.6
+ 2.2
|
XO-2
b
|
0.037
+ 0.002
|
0.57
+ 0.06
|
0.97
+ 0.03
|
0.83
+ 0.12
|
46.1
+ 2.5
|
XO-3
b
|
?
|
12
|
?
|
?
|
?
|
XO-4
b
|
0.056
+ 0.001
|
1.72
+ 0.2
|
1.34
+ 0.05
|
0.95
+ 0.15
|
68
+ 4
|
XO-5
b
|
0.051
|
1.15
+ 0.08
|
1.15
+ 0.12
|
1.0
+ 0.3
|
60
+ 3
|
Ниже
приведены графики зависимости второй космической скорости (скорости
убегания) транзитной экзопланеты от расстояния до центральной звезды,
и аналогичный график зависимости второй космической скорости от приведенного
расстояния до центральной звезды (т.е. от параметра R/Rэф).
Видно, что точки ложатся примерно вдоль наклонной прямой: чем ближе
к звезде, тем выше вторая космическая скорость у транзитной планеты.
Видимо, совсем близкие горячие гиганты с относительно малой второй космической
скоростью попросту не выживают и испаряются.
|
График
зависимости второй космической скорости транзитной экзопланеты (скорости
убегания) от расстояния до центральной звезды (а.е.) Серыми точками
показаны планеты: 1 - HAT-P-1 b, 2 - HAT-P-2 b и т.д., Салатовыми
точками показаны планеты: 1 - HD 149026 b, 2 - HD 17156 b, 3 - HD
189733 b, 4 - HD 209458 b. Красными точками показаны планеты: 1
- OGLE-TR-10 b, 2 - OGLE-TR-111 b, 3 - OGLE-TR-113 b, 4 - OGLE-TR-132
b, 5 - OGLE-TR-56 b, 6 - OGLE-TR-182 b, 7 - OGLE-TR-211 b. Лиловыми
точками показаны планеты: 1 - TrES-1, 2 - TrES-2 и т.д. Желтыми
точками показаны планеты WASP-1 b, WASP-2 b, WASP-3 b, WASP-4 b,
WASP-5 b и т.д. Черными точками показаны планеты XO-1 b, XO-2 b
и т.д. Синими точками показаны планеты CoRoT-Exo-2 b и т.д. Голубой
точкой показана планета GJ 436 b. Розовой точкой показана планета
Lupus-TR-3 b. |
|
График
зависимости второй космической скорости транзитной экзопланеты (скорости
убегания) от приведенного расстояния до центральной звезды R/Rэф.
Серыми точками показаны планеты: 1 - HAT-P-1 b, 2 - HAT-P-2 b и
т.д., Салатовыми точками показаны планеты: 1 - HD 149026 b, 2 -
HD 17156 b, 3 - HD 189733 b, 4 - HD 209458 b. Красными точками показаны
планеты: 1 - OGLE-TR-10 b, 2 - OGLE-TR-111 b, 3 - OGLE-TR-113 b,
4 - OGLE-TR-132 b, 5 - OGLE-TR-56 b, 6 - OGLE-TR-182 b, 7 - OGLE-TR-211
b. Лиловыми точками показаны планеты: 1 - TrES-1, 2 - TrES-2 и т.д.
Желтыми точками показаны планеты WASP-1 b, WASP-2 b, WASP-3 b, WASP-4
b, WASP-5 b, и т.д. Черными точками показаны планеты XO-1 b, XO-2
b и т.д. Голубой точкой показана планета GJ 436 b. Розовой точкой
показана планета Lupus-TR-3 b. |
Интересно,
что если на первом графике транзитные горячие гиганты буквально толпятся
на пятачке в области 0.04-0.05 а.е. и скорости убегания 40-50 км/сек,
второй график показывает заметное разнообразие температурных режимов
транзитных планет (вызванное разной светимостью родительских звезд).
Самой нагретой
планетой из известных является OGLE-TR-113 b - для нее отношение R/Rэф
составляет всего 0.013!
Ниже приведен
график зависимости средней плотности горячего юпитера от расстояния
до центральной звезды. Видно, что средние плотности транзитных планет
меняются в достаточно широких пределах даже при одинаковых расстояниях
до центральной звезды, что может говорить о разном химическом составе
и строении этих планет. Интересно, что средняя плотность самых массивных
планет (8-12 масс Юпитера) может достигать 8-9 г/куб.см, что говорит
о сильном сжатии металлического водорода в их недрах.
|
График
зависимости средней плотности транзитной экзопланеты от расстояния
до центральной звезды. Серыми точками показаны планеты: 1 - HAT-P-1
b, 2 - HAT-P-2 b и т.д., Салатовыми точками показаны планеты: 1
- HD 149026 b, 2 - HD 17156 b, 3 - HD 189733 b, 4 - HD 209458 b.
Красными точками показаны планеты: 1 - OGLE-TR-10 b, 2 - OGLE-TR-111
b, 3 - OGLE-TR-113 b, 4 - OGLE-TR-132 b, 5 - OGLE-TR-56 b, 6 - OGLE-TR-182
b, 7 - OGLE-TR-211 b. Лиловыми точками показаны планеты: 1 - TrES-1,
2 - TrES-2 и т.д. Желтыми точками показаны планеты WASP-1 b, WASP-2
b, WASP-3 b, WASP-4 b, WASP-5 b, и т.д. Черными точками показаны
планеты XO-1 b, XO-2 b и т.д. Синими точками показаны планеты CoRoT-Exo-2
b и т.д. Голубой точкой показана планета GJ 436 b. Розовой точкой
показана планета Lupus-TR-3 b. |
Ниже приведен
аналогичный график зависимости средней плотности транзитной экзопланеты
от приведенного расстояния до центральной звезды R/Rэф.
|
График
зависимости средней плотности транзитной экзопланеты от приведенного
расстояния до центральной звезды R/Rэф. Серыми точками показаны
планеты: 1 - HAT-P-1 b, 2 - HAT-P-2 b и т.д., Салатовыми точками
показаны планеты: 1 - HD 149026 b, 2 - HD 17156 b, 3 - HD 189733
b, 4 - HD 209458 b. Красными точками показаны планеты: 1 - OGLE-TR-10
b, 2 - OGLE-TR-111 b, 3 - OGLE-TR-113 b, 4 - OGLE-TR-132 b, 5 -
OGLE-TR-56 b, 6 - OGLE-TR-182 b, 7 - OGLE-TR-211 b. Лиловыми точками
показаны планеты: 1 - TrES-1, 2 - TrES-2 и т.д. Желтыми точками
показаны планеты WASP-1 b, WASP-2 b и т.д. Черными точками показаны
планеты XO-1 b, XO-2 b и т.д. Голубой точкой показана планета GJ
436 b. Розовой точкой показана планета Lupus-TR-3 b. |
|