Документ взят из кэша поисковой машины. Адрес оригинального документа : http://www.allplanets.ru/novosti_2014_1.htm
Дата изменения: Thu Jan 14 21:01:10 2016
Дата индексирования: Sat Apr 9 22:55:45 2016
Кодировка: Windows-1251

Поисковые слова: п п п п п п п п п п п
Новости планетной астрономии
планетные системы
планетные системы
новости планетной астрономии
статьи
статистика
поиск
глоссарий
галерея
обновления
о сайте
ссылки

30 июня 2014
Kepler-420 b: теплый гигант на эксцентричной 86.6-суточной орбите
прямая ссылка на эту новость

Наземные транзитные обзоры, такие, как SuperWASP и HATNet, обнаружили уже более 150 транзитных горячих юпитеров. Однако из-за особенностей наблюдательной стратегии все эти планеты ограничены орбитальными периодами короче ~10 земных суток. Транзитных планет-гигантов на более широких орбитах известно очень мало. Если рассматривать транзитные гиганты с периодами больше 1 месяца, то для их перечисления хватит пальцев одной руки. Это HD 80606 b (111-дневный период), CoRoT-9 b (95-дневный период), Kepler-30 c (60-дневный период) и Kepler-87 b (115-дневный период).

Изучение долгопериодических планет-гигантов важно для понимания происхождения и эволюции планетных систем (например, для понимания процессов миграции).

Чтобы увеличить количество известных транзитных гигантов на относительно широких орбитах, в 2012 году на обсерватории Верхнего Прованса началась программа по подтверждению транзитных кандидатов Кеплера и измерению их массы методом измерения лучевых скоростей родительских звезд. Для наблюдений были отобраны все звезды каталога KOI ярче +14.7 звездной величины с глубиной транзита от 0.4 до 3% и периодами от 25 до 400 суток. Измерение лучевых скоростей проводилось с помощью спектрографа SOPHIE, установленном на 1.93-метровом телескопе обсерватории Верхнего Прованса (Observatoire de Haute-Provence).

25 июня 2014 года в Архиве электронных препринтов появилась статья, посвященная измерению массы и изучению свойств планеты-гиганта Kepler-420 b (KOI-1257.01).

Транзитный кандидат KOI-1257.01 был представлен группой Кеплера в 2013 году. Звезда KOI-1257 демонстрировала четкий транзитный сигнал с периодом 86.6 земных суток, глубиной 0.7% и продолжительностью 4.25 часов. Продолжительность транзита была слишком малой для планеты на круговой орбите с таким периодом, что говорило о возможном высоком эксцентриситете орбиты KOI-1257.01. Измерение лучевых скоростей родительской звезды полностью подтвердило этот вывод.

Как оказалось, эксцентриситет орбиты гиганта Kepler-420 b достигает 0.772 + 0.045! Его масса оценивается в 1.45 + 0.35 масс Юпитера, радиус - в 0.94 + 0.12 радиусов Юпитера, что приводит к средней плотности 2.1 + 1.2 г/куб.см. Планета делает один оборот вокруг своей звезды за 86.64766 + 0.00003 земных суток, ее средняя эффективная температура оценивается в 511 + 50К (в предположении нулевого альбедо и эффективного теплопереноса на ночную сторону планеты). Из-за высокого эксцентриситета расстояние между планетой и звездой меняется от 0.087 а.е. в перицентре до 0.677 а.е. в апоцентре, т.е. в 7.8 раз!


Сверху вниз: радиусы, массы и эксцентриситеты орбит подтвержденных планет в зависимости от их орбитального периода. Квадратом с точкой показана планета Kepler-420 b. Черными кружками показаны планеты, обнаруженные транзитным методом, светлыми кружками - планеты, обнаруженные методом измерения лучевых скоростей.

Кроме колебаний, вызванных транзитной планетой, европейские астрономы обнаружили дополнительный дрейф лучевой скорости звезды, вызванный массивным телом на внешней орбите. Это тело могло быть массивной планетой-гигантом, коричневым карликом или второй звездой. Всего авторы статьи рассмотрели четыре сценария, которые могли бы описывать данную систему:

- нулевой: внешний компаньон является массивной планетой или коричневым карликом;

- первый: система KOI-1257 состоит из двух звезд, причем транзитная планета вращается вокруг главного компонента пары;

- второй: система KOI-1257 состоит из двух звезд, причем транзитная планета вращается вокруг второго (более тусклого) компонента пары;

- третий: транзитный кандидат KOI-1257.01 является маломассивной звездой, затмевающей второй компонент звездной пары (таким образом, вся система оказывается тройной звездой).

Тщательный анализ всех сценариев (с учетом как фотометрии Кеплера, так и измерения лучевых скоростей звезды Kepler-420 и изучения ее спектров высокого разрешения) привел авторов открытия к выводу, что с достоверностью ~98.7% справедливым является первый сценарий. Также есть некоторая вероятность (~0.93%), что справедлив нулевой сценарий. Остальные сценарии можно исключить (их достоверность менее 0.01%).

Итак, планета Kepler-420 b находится в двойной звездной системе и вращается вокруг главного компонента пары. Ее родительская звезда напоминает Солнце: ее масса оценивается в 0.99 + 0.05 солнечных масс, радиус - в 1.13 + 0.14 солнечных радиусов, спектральный класс G5 V соответствует звезде главной последовательности с высоким содержанием тяжелых элементов и возрастом 9.3 + 3 млрд. лет.

Вторым компонентом пары является оранжевый карлик спектрального класса K6 V/K 7V массой 0.70 + 0.07 солнечных масс и радиусом 0.68 + 0.07 солнечных радиусов, чья светимость составляет всего около 9% светимости главного компонента. Звезды вращаются вокруг общего центра масс по эллиптической орбите с большой полуосью 5.3 + 1.3 а.е. и эксцентриситетом 0.31 +0.37/-0.21, и делают один оборот за 3430 + 1200 земных суток. Интересно, что наклонение орбиты звезд составляет всего 18.2 +18.0/-5.4њ, т.е. орбита двух звезд расположена к нам практически плашмя.

В отличие от многих других планет в двойных системах, где орбиты планет лежат почти в той же плоскости, что и орбита родительских звезд, в системе Kepler-420 орбита планеты резко наклонена к орбите обоих компонентов звездной пары. Возможно, ее высокий эксцентриситет как раз и вызван гравитационным влиянием второго компонента (за счет механизма Козаи).

Авторы открытия подчеркивают, что наличие K-звезды в этой системе весьма вероятно, но еще не достоверно. Они надеются подтвердить ее существование или с помощью астрометрических наблюдений Гайи, или с помощью тщательного спектрального анализа в ближней ИК-области, где находятся спектральные линии, свойственные только звездам спектрального класса K. Однако свойства транзитного гиганта Kepler-420 b мало зависят от того, является ли внешний компонент в этой системе K-звездой или массивной планетой, так что его параметры определены достаточно надежно (в пределах указанных погрешностей).

Информация получена: http://arxiv.org/pdf/1406.6172.pdf

 

 

25 июня 2014
GJ 832 c: суперземля в обитаемой зоне близкого красного карлика
прямая ссылка на эту новость

Данные, полученные космическим телескопом им. Кеплера, говорят о том, что небольшие планеты очень распространены, а планеты-гиганты, напротив, встречаются достаточно редко. Особенно это верно для звезд красных карликов. К настоящему моменту известно всего несколько планет-гигантов, вращающихся вокруг красных карликов по долгопериодическим орбитам, и еще меньше - планет-гигантов на тесных орбитах. В то же время распространенность небольших планет у M-звезд (нептунов, суперземель и планет земного типа), отнесенная к одной звезде, превышает единицу.

Особый интерес среди планетных систем красных карликов вызывают те, что по своему строению напоминают Солнечную систему. Планетная система считается похожей на Солнечную, если она включает в себя планеты-гиганты на широких орбитах с малым эксцентриситетом, и небольшие планеты, вращающиеся на малом расстоянии от своей звезды. Одной из таких планетных систем оказалась система близкого красного карлика GJ 832 (HD 204961).

Звезда GJ 832 удалена от нас на 4.94 + 0.025 пк. Ее спектральный класс M1 V, масса оценивается в 0.45 + 0.05 солнечных масс, светимость составляет (по данным разных авторов) 2.0-2.6% от светимости Солнца. Звезда отличается пониженным содержанием тяжелых элементов - их примерно в 2 раза меньше, чем в составе нашего дневного светила.

Наблюдения за звездой GJ 832 ведутся уже более 15 лет, причем сразу на нескольких инструментах: с помощью спектрографа UCLES в рамках Англо-Австралийского планетного обзора (AAPS), с помощью спектрографа PFS на 6.5-метровом телескопе Магеллан II и с помощью спектрографа HARPS Южно-Европейской обсерватории в Ла Силья (Чили).

В 2008 году рядом со звездой GJ 832 была обнаружена планета-гигант с минимальной массой (параметром m sin i) 0.64 + 0.06 масс Юпитера и орбитальным периодом 3416 + 131 земных суток (~9.4 лет). Планета вращалась вокруг своей звезды по слабоэллиптической орбите с большой полуосью 3.4 + 0.4 а.е. и эксцентриситетом 0.12 + 0.11. Температурный режим гиганта грубо соответствовал температурному режиму Урана.

24 июня 2014 года в Архиве электронных препринтов появилась статья, посвященная открытию второй планеты в системе GJ 832. Авторы объединили данные о лучевых скоростях звезды, полученные всеми тремя спектрографами (UCLES, PFS и HARPS) в разное время, и обнаружили, что кроме долгопериодического колебания с полуамплитудой ~15.5 м/сек, соответствующего гиганту GJ 832 b, в данных есть еще одно колебание с периодом ~35.7 земных суток и полуамплитудой 1.6 м/сек. Дальнейший анализ показал, что это колебание не имеет корреляций с периодом вращения звезды вокруг своей оси или с различными периодами звездной активности, а значит, вызвано влиянием дополнительной планеты.

Минимальная масса планеты GJ 832 c оказалась равной 5.4 + 1 масс Земли. Суперземля вращается вокруг своей звезды по слабоэллиптической орбите с большой полуосью 0.162 + 0.017 а.е. и эксцентриситетом 0.18 + 0.13, и делает один оборот за 35.68 + 0.03 земных суток. Ее температурный режим очень близок к температурному режиму Земли! Однако записывать эту планету в потенциально обитаемые рано: из-за сравнительно высокой массы она наверняка окружена плотной протяженной атмосферой, приводящей к сильному парниковому эффекту. Таким образом, она должна больше напоминать Венеру, а может (при малом наклонении орбиты к лучу зрения), и теплый Нептун.

Помимо открытия внутренней планеты авторы статьи существенно уточнили параметры внешней. Ее орбитальный период немного увеличился (до 3657 + 104 суток), а эксцентриситет орбиты несколько уменьшился (до 0.08 +0.02/-0.06). Большая полуось оказалась равной 3.56 + 0.28 а.е.

Из-за своей близости к Солнцу система GJ 832 является прекрасной целью для будущих коронографических наблюдений. Наклонение орбиты внешнего гиганта определит астрометрическая миссия Гайя, что, в свою очередь, поможет определить истинные (а не минимальные) массы планет этой системы.

Информация получена: http://arxiv.org/pdf/1406.5587.pdf

 

 

21 июня 2014
Пятипланетная система Kepler-238 (KOI-834)
прямая ссылка на эту новость

Одним из неожиданных открытий Кеплера в свое время стало обнаружение многочисленных компактных многопланетных систем, в которых 5-6 планет оказывались плотно упакованными глубоко внутри орбиты Меркурия. По сравнению с такими системами внутренняя часть Солнечной системы выглядит пустынной. Многие из планет в таких системах оказываются связанными орбитальными резонансами низких порядков, т.е. их периоды относятся друг к другу как простые целые числа (1:2, 3:2, 1:3 и т.д.)
Одной из таких систем стала 5-планетная система Kepler-238 (KOI-834, KIC 5436502).

Kepler-238 была представлена группой Кеплера в феврале 2014 года в числе других 340 систем, планетная природа транзитных кандидатов в которых была подтверждена статистическими методами. Кроме них, эту систему анализировал Се Цзивэй методом тайминга транзитов. Она является прекрасным примером компактной системы, содержащей планеты самых разных размеров и типов.

Звезда Kepler-238 по своей температуре напоминает Солнце, но по размерам несколько больше него (ее радиус оценивается в 1.43 + 0.26 солнечных радиусов). Возможно, она недавно сошла с главной последовательности и начала эволюционировать в сторону превращения в красный гигант. Масса звезды примерно на 6% превышает солнечную. Кроме того, Kepler-238 отличается повышенным содержанием тяжелых элементов - их примерно в 2 раза больше, чем в составе нашего дневного светила. Расстояние до звезды не сообщается, но исходя из ее светимости и видимой звездной величины (+15.084), его можно оценить в ~1600 пк.

Кривая блеска Kepler-238 демонстрирует 5 транзитных сигналов с периодами 2.09, 6.15, 13.23, 23.65 и 50.44 земных суток и глубиной, соответствующей планетам радиусом 1.73 + 0.4, 2.39 + 0.45, 3.07 + 0.57, 8.26 + 1.53 и 2.76 + 0.52 радиусов Земли (считая от внутренней планеты к внешней). Внутренняя планета Kepler-238 b удалена от своей звезды всего на 0.034 а.е. и раскалена до 1327К (в предположении альбедо, равного 0.3, и эффективного переноса тепла на ночную сторону); скорее всего, она является планетой земного типа, т.е. состоит преимущественно из железа и скальных пород. Вторая планета Kepler-238 c удалена от звезды на 0.069 а.е. и нагрета до 931К, судя по размерам, она уже содержит заметную долю летучих. Третья планета Kepler-238 d также является мини-нептуном - она вращается на расстоянии 0.115 а.е. и нагрета до 722К. Четвертая планета Kepler-238 e , в отличии от первых трех, является планетой-гигантом (судя по размерам, чем-то вроде Сатурна). Она удалена от родительской звезды на 0.16 а.е., ее эффективная температура оценивается в 593К. Наконец, пятая планета Kepler-238 f - тоже мини-нептун, удаленный от звезды на 0.265 а.е. Сравните с Солнечной системой, в которой внутренняя планета Меркурий вращается на среднем расстоянии 0.387 а.е. от Солнца!

Две внешние планеты e и f близки к орбитальному резонансу 2:1 и влияют друг на друга достаточно сильно, чтобы их массы можно было бы оценить методом тайминга транзитов. К сожалению, поскольку эксцентриситеты орбит обеих планет не известны, можно получить только верхние пределы на их массы. Верхний предел на массу 'сатурна' Kepler-238 e составляет 188.5 масс Земли, верхний предел на массу внешней планеты Kepler-238 f - 5.53 масс Юпитера. Реальная масса этой планеты, конечно, гораздо меньше.

Почти наверняка в системе Kepler-238 есть и другие, не транзитные планеты. Наиболее массивные из них могут быть открыты в будущем методом измерения лучевых скоростей.

Информация получена: http://arxiv.org/pdf/1309.2329v3.pdf
http://arxiv.org/pdf/1402.6534v1.pdf

 

 

18 июня 2014
Очень теплый гигант WASP-80 b: атмосфера солнечного состава и высотная дымка
прямая ссылка на эту новость

Прямое получение изображений, а тем более спектров внесолнечных планет - очень трудная задача, доступная только крупнейшим современным телескопам, и то только для горячих молодых планет, удаленных на десятки астрономических единиц от своих звезд. Однако существует сильный непрямой метод, позволяющий получать грубые спектры транзитных экзопланет. Если планета является транзитной, т.е. регулярно проходит по диску своей звезды и за звездой, то становится возможным измерить зависимость глубины транзита/вторичного минимума от длины волны, т.е. провести трансмиссионную/эмиссионную спектроскопию планеты. Подобные наблюдения уже были проведены для ряда горячих юпитеров, что позволило обнаружить в их составе натрий, водяной пар, метан и др. вещества.

12 июня 2014 года в Архиве электронных препринтов появилась статья японских астрономов, посвященная трансмиссионной спектроскопии транзитного очень теплого гиганта WASP-80 b. Эта планета была открыта в 2013 году в рамках наземного транзитного обзора SuperWASP, она интересна своей умеренной эффективной температурой (~800 K), глубоким транзитом (2.9%) и тем, что ее родительская звезда - сравнительно яркий (+11.9) оранжевый карлик спектрального класса K7 V. Японские астрономы сочли, что трансмиссионная спектроскопия WASP-80 b поможет определить типичные свойства умеренно нагретых планет-гигантов, более прохладных, чем обычные горячие юпитеры.

Наблюдения звезды WASP-80 проводились сразу на нескольких инструментах: на 1.88-метровом телескопе обсерватории Окаяма (Okayama Astrophysical Observatory), на 1.4-метровом телескопе Южно-Африканской обсерватории и на 50-сантиметровом телескопе MITSuME. Всего было изучено 5 транзитов, каждый в 3 или 4 спектральных полосах. Измеренная глубина транзитов на разных длинах волн сравнивалась с предсказаниями трех теоретических моделей планетной атмосферы: модели атмосферы солнечного химического состава с температурой 800К, модели с плотными облаками (плоский трансмиссионный спектр), и модели солнечного химического состава с высотной дымкой и температурой 600К.

В принципе, все модели неплохо описали экспериментальные данные, но ни одна не описала их точно. Так, предсказания первой модели (атмосфера солнечного химического состава с температурой 800К) отличаются от экспериментальных данных на 1.3 сигма, предсказания второй модели (плотные облака, плоский спектр) - на 1.1 сигма, предсказания третьей модели (атмосфера солнечного химического состава, высотная дымка, температура 600К) - на 0.92 сигма. Поскольку при температурах ниже 1000К термохимическое равновесие между метаном и угарным газом в атмосфере горячего гиганта смещается в сторону метана, это естественным образом приводит к появлению высотной дымки, состоящей из нелетучих углеводородов (толинов), образующихся в результате фотохимического разложения метана в атмосфере планеты под действием УФ-излучения звезды.