Normalized to: Y..
[1]
oai:arXiv.org:1010.5643 [pdf] - 1041567
Spectra disentangling applied to the Hyades binary Theta^2 Tau AB: new
orbit, orbital parallax and component properties
Submitted: 2010-10-27
Theta^2 Tauri is a detached and single-lined interferometric-spectroscopic
binary as well as the most massive binary system of the Hyades cluster. The
system revolves in an eccentric orbit with a periodicity of 140.7 days. The
secondary has a similar temperature but is less evolved and fainter than the
primary. It is also rotating more rapidly. Since the composite spectra are
heavily blended, the direct extraction of radial velocities over the orbit of
component B was hitherto unsuccessful. Using high-resolution spectroscopic data
recently obtained with the Elodie (OHP, France) and Hermes (ORM, La Palma,
Spain) spectrographs, and applying a spectra disentangling algorithm to three
independent data sets including spectra from the Oak Ridge Observatory (USA),
we derived an improved spectroscopic orbit and refined the solution by
performing a combined astrometric-spectroscopic analysis based on the new
spectroscopy and the long-baseline data from the Mark III optical
interferometer. As a result, the velocity amplitude of the fainter component is
obtained in a direct and objective way. Major progress based on this new
determination includes an improved computation of the orbital parallax. Our
mass ratio is in good agreement with the older estimates of Peterson et al.
(1991, 1993), but the mass of the primary is 15-25% higher than the more recent
estimates by Torres et al. (1997) and Armstrong et al. (2006). Due to the
strategic position of the components in the turnoff region of the cluster,
these new determinations imply stricter constraints for the age and the
metallicity of the Hyades cluster. The location of component B can be explained
by current evolutionary models, but the location of the more evolved component
A is not trivially explained and requires a detailed abundance analysis of its
disentangled spectrum.