Normalized to: S..
[1]
oai:arXiv.org:1601.04461 [pdf] - 1342138
Detailed spectral and morphological analysis of the shell type SNR RCW
86
Collaboration, H. E. S. S.;
Abramowski, A.;
Aharonian, F.;
Benkhali, F. Ait;
Akhperjanian, A. G.;
AngÓÌner, E. O.;
Backes, M.;
Balzer, A.;
Becherini, Y.;
Tjus, J. Becker;
Berge, D.;
Bernhard, S.;
BernlÓÆhr, K.;
Birsin, E.;
Blackwell, R.;
BÓÆttcher, M.;
Boisson, C.;
Bolmont, J.;
Bordas, P.;
Bregeon, J.;
Brun, F.;
Brun, P.;
Bryan, M.;
Bulik, T.;
Carr, J.;
Casanova, S.;
Chakraborty, N.;
Chalme-Calvet, R.;
Chaves, R. C. G.;
Chen, A.;
Chevalier, J.;
Chretien, M.;
Colafrancesco, S.;
Cologna, G.;
Condon, B.;
Conrad, J.;
Couturier, C.;
Cui, Y.;
Davids, I. D.;
Degrange, B.;
Deil, C.;
deWilt, P.;
Djannati-Atai, A.;
Domainko, W.;
Donath, A.;
Drury, L. O'C.;
Dubus, G.;
Dutson, K.;
Dyks, J.;
Dyrda, M.;
Edwards, T.;
Egberts, K.;
Eger, P.;
Ernenwein, J. -P.;
Espigat, P.;
Farnier, C.;
Fegan, S.;
Feinstein, F.;
Fernandes, M. V.;
Fernandez, D.;
Fiasson, A.;
Fontaine, G.;
FÓÆrster, A.;
FÓÌÓ?ling, M.;
Gabici, S.;
Gajdus, M.;
Gallant, Y. A.;
Garrigoux, T.;
Giavitto, G.;
Giebels, B.;
Glicenstein, J. F.;
Gottschall, D.;
Goyal, A.;
Grondin, M. -H.;
GrudziÕ?ska, M.;
Hadasch, D.;
HÓ?ffner, S.;
Hahn, J.;
Hawkes, J.;
Heinzelmann, G.;
Henri, G.;
Hermann, G.;
Hervet, O.;
Hillert, A.;
Hinton, J. A.;
Hofmann, W.;
Hofverberg, P.;
Hoischen, C.;
Holler, M.;
Horns, D.;
Ivascenko, A.;
Jacholkowska, A.;
Jamrozy, M.;
Janiak, M.;
Jankowsky, F.;
Jung-Richardt, I.;
Kastendieck, M. A.;
Katarzynski, K.;
Katz, U.;
Kerszberg, D.;
Khelifi, B.;
Kieffer, M.;
Klepser, S.;
Klochkov, D.;
Kluzniak, W.;
Kolitzus, D.;
Komin, Nu.;
Kosack, K.;
Krakau, S.;
Krayzel, F.;
KrÓÌger, P. P.;
Laffon, H.;
Lamanna, G.;
Lau, J.;
Lefaucheur, J.;
Lefranc, V.;
Lemiere, A.;
Lemoine-Goumard, M.;
Lenain, J. -P.;
Lohse, T.;
Lopatin, A.;
Lorentz, M.;
Lu, C. -C.;
Lui, R.;
Marandon, V.;
Marcowith, A.;
Mariaud, C.;
Marx, R.;
Maurin, G.;
Maxted, N.;
Mayer, M.;
Meintjes, P. J.;
Menzler, U.;
Meyer, M.;
Mitchell, A. M. W.;
Moderski, R.;
Mohamed, M.;
Moraa, K.;
Moulin, E.;
Murach, T.;
de Naurois, M.;
Niemiec, J.;
Oakes, L.;
Odaka, H.;
S.;
Ó?ttl;
Ohm, S.;
Opitz, B.;
Ostrowski, M.;
Oya, I.;
Panter, M.;
Parsons, R. D.;
Arribas, M. Paz;
Pekeur, N. W.;
Pelletier, G.;
Petrucci, P. -O.;
Peyaud, B.;
Pita, S.;
Poon, H.;
Prokhorov, D.;
Prokoph, H.;
PÓÌhlhofer, G.;
Punch, M.;
Quirrenbach, A.;
Raab, S.;
Reichardt, I.;
Reimer, A.;
Reimer, O.;
Renaud, M.;
Reyes, R. de los;
Rieger, F.;
Romoli, C.;
Rosier-Lees, S.;
Rowell, G.;
Rudak, B.;
Rulten, C. B.;
Sahakian, V.;
Salek, D.;
Sanchez, D. A.;
Santangelo, A.;
Sasaki, M.;
Schlickeiser, R.;
SchÓÌssler, F.;
Schulz, A.;
Schwanke, U.;
Schwemmer, S.;
Seyffert, A. S.;
Simoni, R.;
Sol, H.;
Spanier, F.;
Spengler, G.;
Spies, F.;
Stawarz, L.;
Steenkamp, R.;
Stegmann, C.;
Stinzing, F.;
Stycz, K.;
Sushch, I.;
Tavernet, J. -P.;
Tavernier, T.;
Taylor, A. M.;
Terrier, R.;
Tluczykont, M.;
Trichard, C.;
Tuffs, R.;
Valerius, K.;
van der Walt, J.;
van Eldik, C.;
van Soelen, B.;
Vasileiadis, G.;
Veh, J.;
Venter, C.;
Viana, A.;
Vincent, P.;
Vink, J.;
Voisin, F.;
VÓÆlk, H. J.;
Vuillaume, T.;
Wagner, S. J.;
Wagner, P.;
Wagner, R. M.;
Weidinger, M.;
White, R.;
Wierzcholska, A.;
Willmann, P.;
WÓÆrnlein, A.;
Wouters, D.;
Yang, R.;
Zabalza, V.;
Zaborov, D.;
Zacharia, M.;
Zdziarski, A. A.;
Zech, A.;
Zefi, F.;
Zywucka, N.
Submitted: 2016-01-18
Aims: We aim for an understanding of the morphological and spectral
properties of the supernova remnant RCW~86 and for insights into the production
mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods:
We analyzed High Energy Spectroscopic System data that had increased
sensitivity compared to the observations presented in the RCW~86 H.E.S.S.
discovery publication. Studies of the morphological correlation between the
0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions
have been performed as well as broadband modeling of the spectral energy
distribution with two different emission models. Results:We present the first
conclusive evidence that the TeV gamma-ray emission region is shell-like based
on our morphological studies. The comparison with 2-5~keV X-ray data reveals a
correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is
best described by a power law with an exponential cutoff at $E_{cut}=(3.5\pm
1.2_{stat})$ TeV and a spectral index of $\Gamma$~$1.6\pm 0.2$. A static
leptonic one-zone model adequately describes the measured spectral energy
distribution of RCW~86, with the resultant total kinetic energy of the
electrons above 1 GeV being equivalent to $\sim$0.1\% of the initial kinetic
energy of a Type I a supernova explosion. When using a hadronic model, a
magnetic field of $B$~100$\mu$G is needed to represent the measured data.
Although this is comparable to formerly published estimates, a standard
E$^{-2}$ spectrum for the proton distribution cannot describe the gamma-ray
data. Instead, a spectral index of $\Gamma_p$~1.7 would be required, which
implies that ~$7\times 10^{49}/n_{cm^{-3}}$erg has been transferred into
high-energy protons with the effective density $n_{cm^{-3}}=n/ 1$ cm^-3. This
is about 10\% of the kinetic energy of a typical Type Ia supernova under the
assumption of a density of 1~cm^-3.
[2]
oai:arXiv.org:1011.5583 [pdf] - 269370
Mt. Graham: Optical turbulence vertical distribution at standard and
high vertical resolution
Submitted: 2010-11-25
A characterization of the optical turbulence vertical distribution and all
the main integrated astroclimatic parameters derived from the CN2 and the wind
speed profiles above Mt. Graham is presented. The statistic includes
measurements related to 43 nights done with a Generalized Scidar (GS) used in
standard configuration with a vertical resolution of ~1 km on the whole 20-22
km and with the new technique (HVR-GS) in the first kilometer. The latter
achieves a resolution of ~ 20-30 m in this region of the atmosphere.
Measurements done in different periods of the year permit us to provide a
seasonal variation analysis of the CN2. A discretized distribution of the
typical CN2 profiles useful for the Ground Layer Adaptive Optics (GLAO)
simulations is provided and a specific analysis for the LBT Laser Guide Star
system ARGOS case is done including the calculation of the 'gray zones' for J,
H and K bands. Mt. Graham confirms to be an excellent site with median values
of the seeing without dome contribution equal to 0.72", the isoplanatic angle
equal to 2.5" and the wavefront coherence time equal to 4.8 msec. We provide a
cumulative distribution of the percentage of turbulence developed below H*
where H* is included in the (0,1 km) range. We find that 50% of the whole
turbulence develops in the first 80 m from the ground. The turbulence
decreasing rate is very similar to what has been observed above Mauna Kea.
[3]
oai:arXiv.org:1011.5592 [pdf] - 394310
Optical turbulence: site selection above the internal Antarctic plateau
with a mesoscale model
Submitted: 2010-11-25
Atmospherical mesoscale models can offer unique potentialities to
characterize and discriminate potential astronomical sites. Our team has
recently completely validated the Meso-Nh model above Dome C (Lascaux et al.
2009, 2010). Using all the measurements of CN2 profiles (15 nights) performed
so far at Dome C during the winter time (Trinquet et al. 2008) we proved that
the model can reconstruct, on rich statistical samples, reliable values of all
the three most important parameters characterizing the turbulence features of
an antarctic site: the surface layer thickness, the seeing in the free
atmosphere and in the surface layer. Using the same Meso-Nh model configuration
validated above Dome C, an extended study is now on-going for other sites above
the antarctic plateau, more precisely South Pole and Dome A. In this
contribution we present the most important results obtained in the model
validation process and the results obtained in the comparison between different
astronomical sites above the internal plateau. The Meso-Nh model confirms its
ability in discriminating between different optical turbulence behaviors, and
there is evidence that the three sites have different characteristics regarding
the seeing and the surface layer thickness. We highlight that this study
provides the first homogeneous estimate, done with comparable statistics, of
the optical turbulence developed in the whole 20-22 km above the ground at Dome
C, South Pole and Dome A.