Normalized to: P..
[1]
oai:arXiv.org:1512.00134 [pdf] - 1385424
The First Cold Neptune Analog Exoplanet: MOA-2013-BLG-605Lb
Sumi, T.;
Udalski, A.;
Bennett, D. P.;
Gould, A.;
Poleski, R.;
Bond, I. A.;
Rattenbury, N.;
Pogge, R. W.;
Bensby, T.;
Beaulieu, J. P.;
Marquette, J. B.;
Batista, V.;
Brillant, S.;
Abe, F.;
Asakura, Y.;
Bhattacharya, A.;
Donachie, M.;
Freeman, M.;
Fukui, A.;
Hirao, Y.;
Itow, Y.;
Koshimoto, N.;
Li, M. C. A.;
Ling, C. H.;
Masuda, K.;
Matsubara, Y.;
Muraki, Y.;
Nagakane, M.;
Ohnishi, K.;
Oyokawa, H.;
Saito, To.;
Sharan, A.;
Sullivan, D. J.;
Suzuki, D.;
P.;
Tristram, J.;
Yonehara, A.;
Szymanski, M. K.;
Ulaczyk, K.;
Kozlowski, S.;
Wyrzykowski, L.;
Kubiak, M.;
Pietrukowicz, P.;
Pietrzynski, G.;
Soszynski, I.;
Han, C.;
Jung, Y. -K.;
Shin, I. -G;
Lee, C-U.
Submitted: 2015-11-30, last modified: 2016-04-04
We present the discovery of the first Neptune analog exoplanet,
MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a
super-Earth and it orbits at $9\sim 14$ times the expected position of the
snow-line, $a_{\rm snow}$, which is similar to Neptune's separation of $
11\,a_{\rm snow}$ from the Sun. The planet/host-star mass ratio is
$q=(3.6\pm0.7)\times 10^{-4}$ and the projected separation normalized by the
Einstein radius is $s=2.39\pm0.05$. There are three degenerate physical
solutions and two of these are due to a new type of degeneracy in the
microlensing parallax parameters, which we designate "the wide degeneracy". The
three models have (i) a Neptune-mass planet with a mass of $M_{\rm
p}=21_{-7}^{+6} M_{\rm earth}$ orbiting a low-mass M-dwarf with a mass of
$M_{\rm h}=0.19_{-0.06}^{+0.05} M_\odot$, (ii) a mini-Neptune with $M_{\rm p}=
7.9_{-1.2}^{+1.8} M_{\rm earth}$ orbiting a brown dwarf host with $M_{\rm
h}=0.068_{-0.011}^{+0.019} M_\odot$ and (iii) a super-Earth with $M_{\rm p}=
3.2_{-0.3}^{+0.5} M_{\rm earth}$ orbiting a low-mass brown dwarf host with
$M_{\rm h}=0.025_{-0.004}^{+0.005} M_\odot$. The 3-D planet-host separations
are 4.6$_{-1.2}^{+4.7}$ AU, 2.1$_{-0.2}^{+1.0}$ AU and 0.94$_{-0.02}^{+0.67}$
AU, which are $8.9_{-1.4}^{+10.5}$, $12_{-1}^{+7}$ or $14_{-1}^{+11}$ times
larger than $a_{\rm snow}$ for these models, respectively. The Keck AO
observation confirm that the lens is faint. This discovery suggests that
Neptune-like planets orbiting at $\sim 11\,a_{\rm snow}$ are quite common. They
may be as common as planets at $\sim 3\,a_{\rm snow}$, where microlensing is
most sensitive, so processes similar to the one that formed Uranus and Neptune
in our own Solar System may be quite common in other solar systems.
[2]
oai:arXiv.org:1510.02724 [pdf] - 1301609
Red noise versus planetary interpretations in the microlensing event
OGLE-2013-BLG-446
Bachelet, E.;
Bramich, D. M.;
Han, C.;
Greenhill, J.;
Street, R. A.;
Gould, A.;
Ago, G. D;
AlSubai, K.;
Dominik, M.;
Jaimes, R. Figuera;
Horne, K.;
Hundertmark, M.;
Kains, N.;
Snodgrass, C.;
Steele, I. A.;
Tsapras, Y.;
Albrow, M. D.;
Batista, V.;
Beaulieu, J. -P.;
Bennett, D. P.;
Brillant, S.;
Caldwell, J. A. R.;
Cassan, A.;
Cole, A.;
Coutures, C.;
Dieters, S.;
Prester, D. Dominis;
Donatowicz, J.;
Fouque, P.;
Hill, K.;
Marquette, J. -B.;
Menzies, J.;
Pere, C.;
Ranc, C.;
Wambsganss, J.;
Warren, D.;
de Almeida, L. Andrade;
Choi, J. -Y.;
DePoy, D. L.;
Dong, Subo;
Hung, L. -W.;
Hwang, K. H.;
Jablonski, F.;
Jung, Y. K.;
Kaspi, S.;
Klein, N.;
Lee, C. -U.;
Maoz, D.;
Munoz, J. A.;
Nataf, D.;
Park, H.;
Pogge, R. W.;
Polishook, D.;
Shin, I. -G.;
Shporer, A.;
Abe, J. C. Yee F.;
Bhattacharya, A.;
Bond, I. A.;
Botzler, C. S.;
Freeman, M.;
Fukui, A.;
Itow, Y.;
Koshimoto, N.;
Ling, C. H.;
Masuda, K.;
Matsubara, Y.;
Muraki, Y.;
Ohnishi, K.;
Philpott, L. C.;
Rattenbury, N.;
Saito, To.;
Sullivan, D. J.;
Sumi, T.;
Suzuki, D.;
P.;
Tristram, J.;
Yonehara, A.;
Bozza, V.;
Novati, S. Calchi;
Ciceri, S.;
Galianni, P.;
Gu, S. H.;
Harpsoe, K.;
Hinse, T. C.;
Jorgensen, U. G.;
Juncher, D.;
Korhonen, H.;
Mancini, L.;
Melchiorre, C.;
Popovas, A.;
Postiglione, A.;
Rabus, M.;
Rahvar, S.;
Schmidt, R. W.;
Scarpetta, G.;
Skottfelt, J.;
Southworth, John;
Stabile, An.;
Surdej, J.;
Wang, X. -B.;
Wertz, O.
Submitted: 2015-10-09, last modified: 2015-10-28
For all exoplanet candidates, the reliability of a claimed detection needs to
be assessed through a careful study of systematic errors in the data to
minimize the false positives rate. We present a method to investigate such
systematics in microlensing datasets using the microlensing event
OGLE-2013-BLG-0446 as a case study. The event was observed from multiple sites
around the world and its high magnification (A_{max} \sim 3000) allowed us to
investigate the effects of terrestrial and annual parallax. Real-time modeling
of the event while it was still ongoing suggested the presence of an extremely
low-mass companion (\sim 3M_\oplus ) to the lensing star, leading to
substantial follow-up coverage of the light curve. We test and compare
different models for the light curve and conclude that the data do not favour
the planetary interpretation when systematic errors are taken into account.
[3]
oai:arXiv.org:1508.07027 [pdf] - 1374092
Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic
Disk
Street, R. A.;
Udalski, A.;
Novati, S. Calchi;
Hundertmark, M. P. G.;
Zhu, W.;
Gould, A.;
Yee, J.;
Tsapras, Y.;
Bennett, D. P.;
Project, The RoboNet;
Consortium, MiNDSTEp;
Jorgensen, U. G.;
Dominik, M.;
Andersen, M. I.;
Bachelet, E.;
Bozza, V.;
Bramich, D. M.;
Burgdorf, M. J.;
Cassan, A.;
Ciceri, S.;
D'Ago, G.;
Dong, Subo;
Evans, D. F.;
Gu, Sheng-hong;
Harkonnen, H.;
Hinse, T. C.;
Horne, Keith;
Jaimes, R. Figuera;
Kains, N.;
Kerins, E.;
Korhonen, H.;
Kuffmeier, M.;
Mancini, L.;
Menzies, J.;
Mao, S.;
Peixinho, N.;
Popovas, A.;
Rabus, M.;
Rahvar, S.;
Ranc, C.;
Rasmussen, R. Tronsgaard;
Scarpetta, G.;
Schmidt, R.;
Skottfelt, J.;
Snodgrass, C.;
Southworth, J.;
Steele, I. A.;
Surdej, J.;
Unda-Sanzana, E.;
Verma, P.;
von Essen, C.;
Wambsganss, J.;
Wang, Yi-Bo.;
Wertz, O.;
Project, The OGLE;
Poleski, R.;
Pawlak, M.;
Szymanski, M. K.;
Skowron, J.;
Mroz, P.;
Kozlowski, S.;
Wyrzykowski, L.;
Pietrukowicz, P.;
Pietrzynski, G.;
Soszynski, I.;
Ulaczyk, K.;
Beichman, The Spitzer Team C.;
Bryden, G.;
Carey, S.;
Gaudi, B. S.;
Henderson, C.;
Pogge, R. W.;
Shvartzvald, Y.;
Collaboration, The MOA;
Abe, F.;
Asakura, Y.;
Bhattacharya, A.;
Bond, I. A.;
Donachie, M.;
Freeman, M.;
Fukui, A.;
Hirao, Y.;
Inayama, K.;
Itow, Y.;
Koshimoto, N.;
Li, M. C. A.;
Ling, C. H.;
Masuda, K.;
Matsubara, Y.;
Muraki, Y.;
Nagakane, M.;
Nishioka, T.;
Ohnishi, K.;
Oyokawa, H.;
Rattenbury, N.;
Saito, To.;
Sharan, A.;
Sullivan, D. J.;
Sumi, T.;
Suzuki, D.;
P.;
Tristram, J.;
Wakiyama, Y.;
Yonehara, A.;
Han, KMTNet Modeling Team C.;
Choi, J. -Y.;
Park, H.;
Jung, Y. K.;
Shin, I. -G.
Submitted: 2015-08-27
We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a
0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a
campaign combining ground-based and Spitzer observations to measure the
Galactic distribution of planets. This is the first time that the complex
real-time protocols described by Yee et al. (2015), which aim to maximize
planet sensitivity while maintaining sample integrity, have been carried out in
practice. Multiple survey and follow-up teams successfully combined their
efforts within the framework of these protocols to detect this planet. This is
the second planet in the Spitzer Galactic distribution sample. Both are in the
near-to-mid disk and clearly not in the Galactic bulge.
[4]
oai:arXiv.org:1305.0186 [pdf] - 746516
The Microlensing Event Rate and Optical Depth Toward the Galactic Bulge
from MOA-II
Sumi, T.;
Bennett, D. P.;
Bond, I. A.;
Abe, F.;
Botzler, C. S.;
Fukui, A.;
Furusawa, K.;
Itow, Y.;
Ling, C. H.;
Masuda, K.;
Matsubara, Y.;
Muraki, Y.;
Ohnishi, K.;
Rattenbury, N.;
Saito, To.;
Sullivan, D. J.;
Suzuki, D.;
Sweatman, W. L.;
P.;
Tristram, J.;
Wada, K.;
Yock, P. C. M.
Submitted: 2013-05-01, last modified: 2013-10-09
We present measurements of the microlensing optical depth and event rate
toward the Galactic Bulge based on two years of the MOA-II survey. This sample
contains ~1000 microlensing events, with an Einstein Radius crossing time of
t_E < 200 days between -5 <l< 10 degree and -7 <b< -1 degree. Our event rate
and optical depth analysis uses 474 events with well defined microlensing
parameters. In the central fields with |l|< 5 degree, we find an event rates of
\Gamma = [2.39+/-1.1]e^{[0.60\pm0.05](3-|b|)}x 10^{-5}/star/yr and an optical
depth of \tau_{200} = [2.35+/-0.18]e^{[0.51+/-0.07](3-|b|)}x 10^{-6} for the
427 events using all sources brighter than I_s = 20 mag centered at
(l,b)=(0.38, -3.72). We find that the event rate is maximized at low latitudes
and a longitude of $l~1 degree. For the 111 events in 3.2 deg^2 of the central
Galactic Bulge at |b| < 3.0 degree and 0.0 < l < 2.0, centered at (l,b)=(0.97,
-2.26), we find \Gamma = 4.57_{-0.46}^{+0.51} x 10^{-5}/star/yr and \tau_{200}
= 3.64_{-0.45}^{+ 0.51} x 10^{-6}. We also consider a Red Clump Giant (RCG)
star sample with I_s<17.5 mag. Our results are consistent with previous optical
depth measurements. We find that the previously observed difference in optical
depth measurements between all-source and RCG samples may be largely due to
statistical fluctuations. These event rate measurements towards the central
galactic bulge are necessary to predict the microlensing event rate and to
optimize the survey fields in the future space mission such as WFIRST.
[5]
oai:arXiv.org:1209.3346 [pdf] - 1151421
On the structure of molecular clouds
Submitted: 2012-09-14
We show that the inter-cloud Larson scaling relation between mean volume
density and size $\rho\propto R^{-1}$, which in turn implies that mass
$M\propto R^2$, or that the column density $N$ is constant, is an artifact of
the observational methods used. Specifically, setting the column density
threshold near or above the peak of the column density probability distribution
function Npdf ($N\sim 10^{21}$ cm\alamenos 2) produces the Larson scaling as
long as the Npdf decreases rapidly at higher column densities. We argue that
the physical reasons behind local clouds to have this behavior are that (1)
this peak column density is near the value required to shield CO from
photodissociation in the solar neighborhood, and (2) gas at higher column
densities is rare because it is susceptible to gravitational collapse into much
smaller structures in specific small regions of the cloud. Similarly, we also
use previous results to show that if instead a threshold is set for the volume
density, the density will appear to be constant, implying thus that $M \propto
R^3$. Thus, the Larson scaling relation does not provide much information on
the structure of molecular clouds, and does not imply either that clouds are in
Virial equilibrium, or have a universal structure. We also show that the slope
of the $M-R$ curve for a single cloud, which transitions from near-to-flat
values for large radii to $\alpha=2$ as a limiting case for small radii,
depends on the properties of the Npdf.
[6]
oai:arXiv.org:1009.1015 [pdf] - 223674
Design, analysis, and testing of a microdot apodizer for the apodized
pupil Lyot coronagraph (Research note). III. Application to extremely large
telescopes
Submitted: 2010-09-06
The apodized-pupil Lyot coronagraph is one of the most advanced starlight
cancellation concepts studied intensively in the past few years. Extreme
adaptive optics instruments built for present-day 8m class telescopes will
operate with such coronagraph for imagery and spectroscopy of faint stellar
companions. Following the development of an early demonstrator in the context
of the VLT-SPHERE project (~2012), we manufactured and tested a second APLC
prototype in microdots designed for extremely large telescopes. This study has
been conducted in the context of the EPICS instrument project for the
European-ELT (~2018), where a proof of concept is required at this stage. Our
prototype was specifically designed for the European-ELT pupil, taking its
large central obscuration ratio (30%) into account. Near-IR laboratory results
are compared with simulations. We demonstrate good agreement with theory. A
peak attenuation of 295 was achieved, and contrasts of 10^-5 and 10^-6 were
reached at 7 and 12 lambda/D, respectively. We show that the APLC is able to
maintain these contrasts with a central obscuration ratio of the telescope in
the range 15% to 30%, and we report that these performances can be achieved in
a wide wavelength bandpass (BW = 24%). In addition, we report improvement to
the accuracy of the control of the local transmission of the manufactured
microdot apodizer to that of the previous prototype. The local profile error is
found to be less than 2%. The maturity and reproducibility of the APLC made
with microdots is demonstrated. The apodized pupil Lyot coronagraph is
confirmed to be a pertinent candidate for high-contrast imaging with ELTs.
[7]
oai:arXiv.org:1006.1396 [pdf] - 1032970
Determining the Physical Lens Parameters of the Binary Gravitational
Microlensing Event MOA-2009-BLG-016
Hwang, K. -H.;
Han, C.;
Bond, I. A.;
Miyake, N.;
Abe, F.;
Bennett, D. P.;
Botzler, C. S.;
Fukui, A.;
Furusawa, K.;
Hayashi, F.;
Hearnshaw, J. B.;
Hosaka, S.;
Itow, Y.;
Kamiya, K.;
Kilmartin, P. M.;
Korpela, A.;
Lin, W.;
Ling, C. H.;
Makita, S.;
Masuda, K.;
Matsubara, Y.;
Muraki, Y.;
Nishimoto, K.;
Ohnishi, K.;
Perrott, Y. C.;
Rattenbury, N.;
Saito, To.;
Sako, T.;
Skuljan, L.;
Sullivan, D. J.;
Sumi, T.;
Suzuki, D.;
Sweatman, W. L.;
P.;
Tristram, J.;
Wada, K.;
L., P. C. M. Yock D.;
Depoy;
Gaudi, B. S.;
Gould, A.;
Lee, C. -U.;
Pogge, R. W.
Submitted: 2010-06-07
We report the result of the analysis of the light curve of the microlensing
event MOA-2009-BLG-016. The light curve is characterized by a short-duration
anomaly near the peak and an overall asymmetry. We find that the peak anomaly
is due to a binary companion to the primary lens and the asymmetry of the light
curve is explained by the parallax effect caused by the acceleration of the
observer over the course of the event due to the orbital motion of the Earth
around the Sun. In addition, we detect evidence for the effect of the finite
size of the source near the peak of the event, which allows us to measure the
angular Einstein radius of the lens system. The Einstein radius combined with
the microlens parallax allows us to determine the total mass of the lens and
the distance to the lens. We identify three distinct classes of degenerate
solutions for the binary lens parameters, where two are manifestations of the
previously identified degeneracies of close/wide binaries and positive/negative
impact parameters, while the third class is caused by the symmetric cycloid
shape of the caustic. We find that, for the best-fit solution, the estimated
mass of the lower-mass component of the binary is (0.04 +- 0.01) M_sun,
implying a brown-dwarf companion. However, there exists a solution that is
worse only by \Delta\chi^2 ~ 3 for which the mass of the secondary is above the
hydrogen-burning limit. Unfortunately, resolving these two degenerate solutions
will be difficult as the relative lens-source proper motions for both are
similar and small (~ 1 mas/yr) and thus the lens will remain blended with the
source for the next several decades.
[8]
oai:arXiv.org:0912.1171 [pdf] - 554128
A Cold Neptune-Mass Planet OGLE-2007-BLG-368Lb: Cold Neptunes Are Common
Sumi, T.;
Bennett, D. P.;
Bond, I. A.;
Udalski, A.;
Batista, V.;
Dominik, M.;
Fouquц©, P.;
Kubas, D.;
Gould, A.;
Macintosh, B.;
Cook, K.;
Dong, S.;
Skuljan, L.;
Cassan, A.;
Collaboration, The MOA;
:;
Abe, F.;
Botzler, C. S.;
Fukui, A.;
Furusawa, K.;
Hearnshaw, J. B.;
Itow, Y.;
Kamiya, K.;
Kilmartin, P. M.;
Korpela, A.;
Lin, W.;
Ling, C. H.;
Masuda, K.;
Matsubara, Y.;
Miyake, N.;
Muraki, Y.;
Nagaya, M.;
Nagayama, T.;
Ohnishi, K.;
Okumura, T.;
Perrott, Y. C.;
Rattenbury, N.;
Saito, To.;
Sako, T.;
Sullivan, D. J.;
Sweatman, W. L.;
P.;
Yock, P. C. M.;
Collaboration, The PLANET;
:;
Beaulieu, J. P.;
Cole, A.;
Coutures, Ch.;
Duran, M. F.;
Greenhill, J.;
Jablonski, F.;
Marboeuf, U.;
Martioli, E.;
Pedretti, E.;
Pejcha, O.;
Rojo, P.;
Albrow, M. D.;
Brillant, S.;
Bode, M.;
Bramich, D. M.;
Burgdorf, M. J.;
Caldwell, J. A. R.;
Calitz, H.;
Corrales, E.;
Dieters, S.;
Prester, D. Dominis;
Donatowicz, J.;
Hill, K.;
Hoffman, M.;
Horne, K.;
J, U. G.;
Kains, N.;
Kane, S.;
Marquette, J. B.;
Martin, R.;
Meintjes, P.;
Menzies, J.;
Pollard, K. R.;
Sahu, K. C.;
Snodgrass, C.;
Steele, I.;
Street, R.;
Tsapras, Y.;
Wambsganss, J.;
Williams, A.;
Zub, M.;
Collaboration, The OGLE;
:;
Szyma, M. K.;
Kubiak, M.;
Pietrzy, G.;
Soszy, I.;
Szewczyk, O.;
Ulaczyk, K.;
Collaboration, The microFUN;
:;
Allen, W.;
Christie, G. W.;
DePoy, D. L.;
Gaudi, B. S.;
Han, C.;
Janczak, J.;
Lee, C. -U.;
McCormick, J.;
Mallia, F.;
Monard, B.;
Natusch, T.;
Park, B. -G.;
Pogge, R. W.;
Santallo, R.
Submitted: 2009-12-07, last modified: 2010-01-22
We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a
planet-star mass ratio of q=[9.5 +/- 2.1] x 10^{-5} via gravitational
microlensing. The planetary deviation was detected in real-time thanks to the
high cadence of the MOA survey, real-time light curve monitoring and intensive
follow-up observations. A Bayesian analysis returns the stellar mass and
distance at M_l = 0.64_{-0.26}^{+0.21} M_\sun and D_l = 5.9_{-1.4}^{+0.9} kpc,
respectively, so the mass and separation of the planet are M_p = 20_{-8}^{+7}
M_\oplus and a = 3.3_{-0.8}^{+1.4} AU, respectively. This discovery adds
another cold Neptune-mass planet to the planetary sample discovered by
microlensing, which now comprise four cold Neptune/Super-Earths, five gas giant
planets, and another sub-Saturn mass planet whose nature is unclear. The
discovery of these ten cold exoplanets by the microlensing method implies that
the mass ratio function of cold exoplanets scales as dN_{\rm pl}/d\log q
\propto q^{-0.7 +/- 0.2} with a 95% confidence level upper limit of n < -0.35
(where dN_{\rm pl}/d\log q \propto q^n). As microlensing is most sensitive to
planets beyond the snow-line, this implies that Neptune-mass planets are at
least three times more common than Jupiters in this region at the 95%
confidence level.