Normalized to: P..
[1]
oai:arXiv.org:1512.00134 [pdf] - 1385424
The First Cold Neptune Analog Exoplanet: MOA-2013-BLG-605Lb
Sumi, T.;
Udalski, A.;
Bennett, D. P.;
Gould, A.;
Poleski, R.;
Bond, I. A.;
Rattenbury, N.;
Pogge, R. W.;
Bensby, T.;
Beaulieu, J. P.;
Marquette, J. B.;
Batista, V.;
Brillant, S.;
Abe, F.;
Asakura, Y.;
Bhattacharya, A.;
Donachie, M.;
Freeman, M.;
Fukui, A.;
Hirao, Y.;
Itow, Y.;
Koshimoto, N.;
Li, M. C. A.;
Ling, C. H.;
Masuda, K.;
Matsubara, Y.;
Muraki, Y.;
Nagakane, M.;
Ohnishi, K.;
Oyokawa, H.;
Saito, To.;
Sharan, A.;
Sullivan, D. J.;
Suzuki, D.;
P.;
Tristram, J.;
Yonehara, A.;
Szymanski, M. K.;
Ulaczyk, K.;
Kozlowski, S.;
Wyrzykowski, L.;
Kubiak, M.;
Pietrukowicz, P.;
Pietrzynski, G.;
Soszynski, I.;
Han, C.;
Jung, Y. -K.;
Shin, I. -G;
Lee, C-U.
Submitted: 2015-11-30, last modified: 2016-04-04
We present the discovery of the first Neptune analog exoplanet,
MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a
super-Earth and it orbits at $9\sim 14$ times the expected position of the
snow-line, $a_{\rm snow}$, which is similar to Neptune's separation of $
11\,a_{\rm snow}$ from the Sun. The planet/host-star mass ratio is
$q=(3.6\pm0.7)\times 10^{-4}$ and the projected separation normalized by the
Einstein radius is $s=2.39\pm0.05$. There are three degenerate physical
solutions and two of these are due to a new type of degeneracy in the
microlensing parallax parameters, which we designate "the wide degeneracy". The
three models have (i) a Neptune-mass planet with a mass of $M_{\rm
p}=21_{-7}^{+6} M_{\rm earth}$ orbiting a low-mass M-dwarf with a mass of
$M_{\rm h}=0.19_{-0.06}^{+0.05} M_\odot$, (ii) a mini-Neptune with $M_{\rm p}=
7.9_{-1.2}^{+1.8} M_{\rm earth}$ orbiting a brown dwarf host with $M_{\rm
h}=0.068_{-0.011}^{+0.019} M_\odot$ and (iii) a super-Earth with $M_{\rm p}=
3.2_{-0.3}^{+0.5} M_{\rm earth}$ orbiting a low-mass brown dwarf host with
$M_{\rm h}=0.025_{-0.004}^{+0.005} M_\odot$. The 3-D planet-host separations
are 4.6$_{-1.2}^{+4.7}$ AU, 2.1$_{-0.2}^{+1.0}$ AU and 0.94$_{-0.02}^{+0.67}$
AU, which are $8.9_{-1.4}^{+10.5}$, $12_{-1}^{+7}$ or $14_{-1}^{+11}$ times
larger than $a_{\rm snow}$ for these models, respectively. The Keck AO
observation confirm that the lens is faint. This discovery suggests that
Neptune-like planets orbiting at $\sim 11\,a_{\rm snow}$ are quite common. They
may be as common as planets at $\sim 3\,a_{\rm snow}$, where microlensing is
most sensitive, so processes similar to the one that formed Uranus and Neptune
in our own Solar System may be quite common in other solar systems.
[2]
oai:arXiv.org:1510.02724 [pdf] - 1301609
Red noise versus planetary interpretations in the microlensing event
OGLE-2013-BLG-446
Bachelet, E.;
Bramich, D. M.;
Han, C.;
Greenhill, J.;
Street, R. A.;
Gould, A.;
Ago, G. D;
AlSubai, K.;
Dominik, M.;
Jaimes, R. Figuera;
Horne, K.;
Hundertmark, M.;
Kains, N.;
Snodgrass, C.;
Steele, I. A.;
Tsapras, Y.;
Albrow, M. D.;
Batista, V.;
Beaulieu, J. -P.;
Bennett, D. P.;
Brillant, S.;
Caldwell, J. A. R.;
Cassan, A.;
Cole, A.;
Coutures, C.;
Dieters, S.;
Prester, D. Dominis;
Donatowicz, J.;
Fouque, P.;
Hill, K.;
Marquette, J. -B.;
Menzies, J.;
Pere, C.;
Ranc, C.;
Wambsganss, J.;
Warren, D.;
de Almeida, L. Andrade;
Choi, J. -Y.;
DePoy, D. L.;
Dong, Subo;
Hung, L. -W.;
Hwang, K. H.;
Jablonski, F.;
Jung, Y. K.;
Kaspi, S.;
Klein, N.;
Lee, C. -U.;
Maoz, D.;
Munoz, J. A.;
Nataf, D.;
Park, H.;
Pogge, R. W.;
Polishook, D.;
Shin, I. -G.;
Shporer, A.;
Abe, J. C. Yee F.;
Bhattacharya, A.;
Bond, I. A.;
Botzler, C. S.;
Freeman, M.;
Fukui, A.;
Itow, Y.;
Koshimoto, N.;
Ling, C. H.;
Masuda, K.;
Matsubara, Y.;
Muraki, Y.;
Ohnishi, K.;
Philpott, L. C.;
Rattenbury, N.;
Saito, To.;
Sullivan, D. J.;
Sumi, T.;
Suzuki, D.;
P.;
Tristram, J.;
Yonehara, A.;
Bozza, V.;
Novati, S. Calchi;
Ciceri, S.;
Galianni, P.;
Gu, S. H.;
Harpsoe, K.;
Hinse, T. C.;
Jorgensen, U. G.;
Juncher, D.;
Korhonen, H.;
Mancini, L.;
Melchiorre, C.;
Popovas, A.;
Postiglione, A.;
Rabus, M.;
Rahvar, S.;
Schmidt, R. W.;
Scarpetta, G.;
Skottfelt, J.;
Southworth, John;
Stabile, An.;
Surdej, J.;
Wang, X. -B.;
Wertz, O.
Submitted: 2015-10-09, last modified: 2015-10-28
For all exoplanet candidates, the reliability of a claimed detection needs to
be assessed through a careful study of systematic errors in the data to
minimize the false positives rate. We present a method to investigate such
systematics in microlensing datasets using the microlensing event
OGLE-2013-BLG-0446 as a case study. The event was observed from multiple sites
around the world and its high magnification (A_{max} \sim 3000) allowed us to
investigate the effects of terrestrial and annual parallax. Real-time modeling
of the event while it was still ongoing suggested the presence of an extremely
low-mass companion (\sim 3M_\oplus ) to the lensing star, leading to
substantial follow-up coverage of the light curve. We test and compare
different models for the light curve and conclude that the data do not favour
the planetary interpretation when systematic errors are taken into account.
[3]
oai:arXiv.org:1508.07027 [pdf] - 1374092
Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic
Disk
Street, R. A.;
Udalski, A.;
Novati, S. Calchi;
Hundertmark, M. P. G.;
Zhu, W.;
Gould, A.;
Yee, J.;
Tsapras, Y.;
Bennett, D. P.;
Project, The RoboNet;
Consortium, MiNDSTEp;
Jorgensen, U. G.;
Dominik, M.;
Andersen, M. I.;
Bachelet, E.;
Bozza, V.;
Bramich, D. M.;
Burgdorf, M. J.;
Cassan, A.;
Ciceri, S.;
D'Ago, G.;
Dong, Subo;
Evans, D. F.;
Gu, Sheng-hong;
Harkonnen, H.;
Hinse, T. C.;
Horne, Keith;
Jaimes, R. Figuera;
Kains, N.;
Kerins, E.;
Korhonen, H.;
Kuffmeier, M.;
Mancini, L.;
Menzies, J.;
Mao, S.;
Peixinho, N.;
Popovas, A.;
Rabus, M.;
Rahvar, S.;
Ranc, C.;
Rasmussen, R. Tronsgaard;
Scarpetta, G.;
Schmidt, R.;
Skottfelt, J.;
Snodgrass, C.;
Southworth, J.;
Steele, I. A.;
Surdej, J.;
Unda-Sanzana, E.;
Verma, P.;
von Essen, C.;
Wambsganss, J.;
Wang, Yi-Bo.;
Wertz, O.;
Project, The OGLE;
Poleski, R.;
Pawlak, M.;
Szymanski, M. K.;
Skowron, J.;
Mroz, P.;
Kozlowski, S.;
Wyrzykowski, L.;
Pietrukowicz, P.;
Pietrzynski, G.;
Soszynski, I.;
Ulaczyk, K.;
Beichman, The Spitzer Team C.;
Bryden, G.;
Carey, S.;
Gaudi, B. S.;
Henderson, C.;
Pogge, R. W.;
Shvartzvald, Y.;
Collaboration, The MOA;
Abe, F.;
Asakura, Y.;
Bhattacharya, A.;
Bond, I. A.;
Donachie, M.;
Freeman, M.;
Fukui, A.;
Hirao, Y.;
Inayama, K.;
Itow, Y.;
Koshimoto, N.;
Li, M. C. A.;
Ling, C. H.;
Masuda, K.;
Matsubara, Y.;
Muraki, Y.;
Nagakane, M.;
Nishioka, T.;
Ohnishi, K.;
Oyokawa, H.;
Rattenbury, N.;
Saito, To.;
Sharan, A.;
Sullivan, D. J.;
Sumi, T.;
Suzuki, D.;
P.;
Tristram, J.;
Wakiyama, Y.;
Yonehara, A.;
Han, KMTNet Modeling Team C.;
Choi, J. -Y.;
Park, H.;
Jung, Y. K.;
Shin, I. -G.
Submitted: 2015-08-27
We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a
0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a
campaign combining ground-based and Spitzer observations to measure the
Galactic distribution of planets. This is the first time that the complex
real-time protocols described by Yee et al. (2015), which aim to maximize
planet sensitivity while maintaining sample integrity, have been carried out in
practice. Multiple survey and follow-up teams successfully combined their
efforts within the framework of these protocols to detect this planet. This is
the second planet in the Spitzer Galactic distribution sample. Both are in the
near-to-mid disk and clearly not in the Galactic bulge.
[4]
oai:arXiv.org:1305.0186 [pdf] - 746516
The Microlensing Event Rate and Optical Depth Toward the Galactic Bulge
from MOA-II
Sumi, T.;
Bennett, D. P.;
Bond, I. A.;
Abe, F.;
Botzler, C. S.;
Fukui, A.;
Furusawa, K.;
Itow, Y.;
Ling, C. H.;
Masuda, K.;
Matsubara, Y.;
Muraki, Y.;
Ohnishi, K.;
Rattenbury, N.;
Saito, To.;
Sullivan, D. J.;
Suzuki, D.;
Sweatman, W. L.;
P.;
Tristram, J.;
Wada, K.;
Yock, P. C. M.
Submitted: 2013-05-01, last modified: 2013-10-09
We present measurements of the microlensing optical depth and event rate
toward the Galactic Bulge based on two years of the MOA-II survey. This sample
contains ~1000 microlensing events, with an Einstein Radius crossing time of
t_E < 200 days between -5 <l< 10 degree and -7 <b< -1 degree. Our event rate
and optical depth analysis uses 474 events with well defined microlensing
parameters. In the central fields with |l|< 5 degree, we find an event rates of
\Gamma = [2.39+/-1.1]e^{[0.60\pm0.05](3-|b|)}x 10^{-5}/star/yr and an optical
depth of \tau_{200} = [2.35+/-0.18]e^{[0.51+/-0.07](3-|b|)}x 10^{-6} for the
427 events using all sources brighter than I_s = 20 mag centered at
(l,b)=(0.38, -3.72). We find that the event rate is maximized at low latitudes
and a longitude of $l~1 degree. For the 111 events in 3.2 deg^2 of the central
Galactic Bulge at |b| < 3.0 degree and 0.0 < l < 2.0, centered at (l,b)=(0.97,
-2.26), we find \Gamma = 4.57_{-0.46}^{+0.51} x 10^{-5}/star/yr and \tau_{200}
= 3.64_{-0.45}^{+ 0.51} x 10^{-6}. We also consider a Red Clump Giant (RCG)
star sample with I_s<17.5 mag. Our results are consistent with previous optical
depth measur