Normalized to: N.
[1]
oai:arXiv.org:1502.00543 [pdf] - 1332916
Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich
sources: Addendum
Planck Collaboration;
Ade, P. A. R.;
Aghanim, N.;
Armitage-Caplan, C.;
Arnaud, M.;
Ashdown, M.;
Atrio-Barandela, F.;
Aumont, J.;
Aussel, H.;
Baccigalupi, C.;
Banday, A. J.;
Barreiro, R. B.;
Barrena, R.;
Bartelmann, M.;
Bartlett, J. G.;
Battaner, E.;
Benabed, K.;
BenoÓ?t, A.;
Benoit-LÓ?vy, A.;
Bernard, J. -P.;
Bersanelli, M.;
Bielewicz, P.;
Bikmaev, I.;
Bobin, J.;
Bock, J. J.;
BÓÆhringer, H.;
Bonaldi, A.;
Bond, J. R.;
Borrill, J.;
Bouchet, F. R.;
Bridges, M.;
Bucher, M.;
Burenin, R.;
Burigana, C.;
Butler, R. C.;
Cardoso, J. -F.;
Carvalho, P.;
Catalano, A.;
Challinor, A.;
Chamballu, A.;
Chary, R. -R.;
Chen, X.;
Chiang, H. C.;
Chiang, L. -Y;
Chon, G.;
Christensen, P. R.;
Churazov, E.;
Church, S.;
Clements, D. L.;
Colombi, S.;
Colombo, L. P. L.;
Comis, B.;
Couchot, F.;
Coulais, A.;
Crill, B. P.;
Curto, A.;
Cuttaia, F.;
Da Silva, A.;
Dahle, H.;
Danese, L.;
Davies, R. D.;
Davis, R. J.;
de Bernardis, P.;
de Rosa, A.;
de Zotti, G.;
Delabrouille, J.;
Delouis, J. -M.;
DÓ?moclÓ?s, J.;
DÓ?sert, F. -X.;
Dickinson, C.;
Diego, J. M.;
Dolag, K.;
Dole, H.;
Donzelli, S.;
DorÓ?, O.;
Douspis, M.;
Dupac, X.;
Efstathiou, G.;
EnÓ?lin, T. A.;
Eriksen, H. K.;
Feroz, F.;
Ferragamo, A.;
Finelli, F.;
Flores-Cacho, I.;
Forni, O.;
Frailis, M.;
Franceschi, E.;
Fromenteau, S.;
Galeotta, S.;
Ganga, K.;
GÓ?nova-Santos, R. T.;
Giard, M.;
Giardino, G.;
Gilfanov, M.;
Giraud-HÓ?raud, Y.;
GonzÓÅlez-Nuevo, J.;
GÓÃrski, K. M.;
Grainge, K. J. B.;
Gratton, S.;
Gregorio, A.;
N;
Groeneboom, E.;
Gruppuso, A.;
Hansen, F. K.;
Hanson, D.;
Harrison, D.;
Hempel, A.;
Henrot-VersillÓ?, S.;
HernÓÅndez-Monteagudo, C.;
Herranz, D.;
Hildebrandt, S. R.;
Hivon, E.;
Hobson, M.;
Holmes, W. A.;
Hornstrup, A.;
Hovest, W.;
Huffenberger, K. M.;
Hurier, G.;
Hurley-Walker, N.;
Jaffe, A. H.;
Jaffe, T. R.;
Jones, W. C.;
Juvela, M.;
KeihÓ?nen, E.;
Keskitalo, R.;
Khamitov, I.;
Kisner, T. S.;
Kneissl, R.;
Knoche, J.;
Knox, L.;
Kunz, M.;
Kurki-Suonio, H.;
Lagache, G.;
LÓ?hteenmÓ?ki, A.;
Lamarre, J. -M.;
Lasenby, A.;
Laureijs, R. J.;
Lawrence, C. R.;
Leahy, J. P.;
Leonardi, R.;
LeÓÃn-Tavares, J.;
Lesgourgues, J.;
Li, C.;
Liddle, A.;
Liguori, M.;
Lilje, P. B.;
Linden-VÓÈrnle, M.;
LÓÃpez-Caniego, M.;
Lubin, P. M.;
MacÓ-as-PÓ?rez, J. F.;
MacTavish, C. J.;
Maffei, B.;
Maino, D.;
Mandolesi, N.;
Maris, M.;
Marshall, D. J.;
Martin, P. G.;
MartÓ-nez-GonzÓÅlez, E.;
Masi, S.;
Massardi, M.;
Matarrese, S.;
Matthai, F.;
Mazzotta, P.;
Mei, S.;
Meinhold, P. R.;
Melchiorri, A.;
Melin, J. -B.;
Mendes, L.;
Mennella, A.;
Migliaccio, M.;
Mikkelsen, K.;
Mitra, S.;
Miville-DeschÓ?nes, M. -A.;
Moneti, A.;
Montier, L.;
Morgante, G.;
Mortlock, D.;
Munshi, D.;
Murphy, J. A.;
Naselsky, P.;
Nastasi, A.;
Nati, F.;
Natoli, P.;
Nesvadba, N. P. H.;
Netterfield, C. B.;
NÓÈrgaard-Nielsen, H. U.;
Noviello, F.;
Novikov, D.;
Novikov, I.;
O'Dwyer, I. J.;
Olamaie, M.;
Osborne, S.;
Oxborrow, C. A.;
Paci, F.;
Pagano, L.;
Pajot, F.;
Paoletti, D.;
Pasian, F.;
Patanchon, G.;
Pearson, T. J.;
Perdereau, O.;
Perotto, L.;
Perrott, Y. C.;
Perrotta, F.;
Piacentini, F.;
Piat, M.;
Pierpaoli, E.;
Pietrobon, D.;
Plaszczynski, S.;
Pointecouteau, E.;
Polenta, G.;
Ponthieu, N.;
Popa, L.;
Poutanen, T.;
Pratt, G. W.;
PrÓ?zeau, G.;
Prunet, S.;
Puget, J. -L.;
Rachen, J. P.;
Reach, W. T.;
Rebolo, R.;
Reinecke, M.;
Remazeilles, M.;
Renault, C.;
Ricciardi, S.;
Riller, T.;
Ristorcelli, I.;
Rocha, G.;
Rosset, C.;
Roudier, G.;
Rowan-Robinson, M.;
RubiÓÁo-MartÓ-n, J. A.;
Rumsey, C.;
Rusholme, B.;
Sandri, M.;
Santos, D.;
Saunders, R. D. E.;
Savini, G.;
Schammel, M. P.;
Scott, D.;
Seiffert, M. D.;
Shellard, E. P. S.;
Shimwell, T. W.;
Spencer, L. D.;
Starck, J. -L.;
Stolyarov, V.;
Stompor, R.;
Streblyanska, A.;
Sudiwala, R.;
Sunyaev, R.;
Sureau, F.;
Sutton, D.;
Suur-Uski, A. -S.;
Sygnet, J. -F.;
Tauber, J. A.;
Tavagnacco, D.;
Terenzi, L.;
Toffolatti, L.;
Tomasi, M.;
Tramonte, D.;
Tristram, M.;
Tucci, M.;
Tuovinen, J.;
TÓÌrler, M.;
Umana, G.;
Valenziano, L.;
Valiviita, J.;
Van Tent, B.;
Vibert, L.;
Vielva, P.;
Villa, F.;
Vittorio, N.;
Wade, L. A.;
Wandelt, B. D.;
White, M.;
White, S. D. M.;
Yvon, D.;
Zacchei, A.;
Zonca, A.
Submitted: 2015-02-02
We update the all-sky Planck catalogue of 1227 clusters and cluster
candidates (PSZ1) published in March 2013, derived from Sunyaev-Zeldovich (SZ)
effect detections using the first 15.5 months of Planck satellite observations.
Addendum. We deliver an updated version of the PSZ1 catalogue, reporting the
further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now
contains 947 confirmed clusters, of which 214 were confirmed as newly
discovered clusters through follow-up observations undertaken by the Planck
Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which
736 (~80.6%) are spectroscopic, and associated mass estimates derived from the
Y_z mass proxy. We also provide a new SZ quality flag, derived from a novel
artificial neural network classification of the SZ signal, for the remaining
280 candidates. Based on this assessment, the purity of the updated PSZ1
catalogue is estimated to be 94%. In this release, we provide the full updated
catalogue and an additional readme file with further information on the Planck
SZ detections.
[2]
oai:arXiv.org:1303.5089 [pdf] - 1165439
Planck 2013 results. XXIX. Planck catalogue of Sunyaev-Zeldovich sources
Planck Collaboration;
Ade, P. A. R.;
Aghanim, N.;
Armitage-Caplan, C.;
Arnaud, M.;
Ashdown, M.;
Atrio-Barandela, F.;
Aumont, J.;
Aussel, H.;
Baccigalupi, C.;
Banday, A. J.;
Barreiro, R. B.;
Barrena, R.;
Bartelmann, M.;
Bartlett, J. G.;
Battaner, E.;
Benabed, K.;
BenoÓ?t, A.;
Benoit-LÓ?vy, A.;
Bernard, J. -P.;
Bersanelli, M.;
Bielewicz, P.;
Bikmaev, I.;
Bobin, J.;
Bock, J. J.;
BÓÆhringer, H.;
Bonaldi, A.;
Bond, J. R.;
Borrill, J.;
Bouchet, F. R.;
Bridges, M.;
Bucher, M.;
Burenin, R.;
Burigana, C.;
Butler, R. C.;
Cardoso, J. -F.;
Carvalho, P.;
Catalano, A.;
Challinor, A.;
Chamballu, A.;
Chary, R. -R.;
Chen, X.;
Chiang, H. C.;
Chiang, L. -Y;
Chon, G.;
Christensen, P. R.;
Churazov, E.;
Church, S.;
Clements, D. L.;
Colombi, S.;
Colombo, L. P. L.;
Comis, B.;
Couchot, F.;
Coulais, A.;
Crill, B. P.;
Curto, A.;
Cuttaia, F.;
Da Silva, A.;
Dahle, H.;
Danese, L.;
Davies, R. D.;
Davis, R. J.;
de Bernardis, P.;
de Rosa, A.;
de Zotti, G.;
Delabrouille, J.;
Delouis, J. -M.;
DÓ?moclÓ?s, J.;
DÓ?sert, F. -X.;
Dickinson, C.;
Diego, J. M.;
Dolag, K.;
Dole, H.;
Donzelli, S.;
DorÓ?, O.;
Douspis, M.;
Dupac, X.;
Efstathiou, G.;
EnÓ?lin, T. A.;
Eriksen, H. K.;
Feroz, F.;
Finelli, F.;
Flores-Cacho, I.;
Forni, O.;
Frailis, M.;
Franceschi, E.;
Fromenteau, S.;
Galeotta, S.;
Ganga, K.;
GÓ?nova-Santos, R. T.;
Giard, M.;
Giardino, G.;
Gilfanov, M.;
Giraud-HÓ?raud, Y.;
GonzÓÅlez-Nuevo, J.;
GÓÃrski, K. M.;
Grainge, K. J. B.;
Gratton, S.;
Gregorio, A.;
N;
Groeneboom, E.;
Gruppuso, A.;
Hansen, F. K.;
Hanson, D.;
Harrison, D.;
Hempel, A.;
Henrot-VersillÓ?, S.;
HernÓÅndez-Monteagudo, C.;
Herranz, D.;
Hildebrandt, S. R.;
Hivon, E.;
Hobson, M.;
Holmes, W. A.;
Hornstrup, A.;
Hovest, W.;
Huffenberger, K. M.;
Hurier, G.;
Hurley-Walker, N.;
Jaffe, A. H.;
Jaffe, T. R.;
Jones, W. C.;
Juvela, M.;
KeihÓ?nen, E.;
Keskitalo, R.;
Khamitov, I.;
Kisner, T. S.;
Kneissl, R.;
Knoche, J.;
Knox, L.;
Kunz, M.;
Kurki-Suonio, H.;
Lagache, G.;
LÓ?hteenmÓ?ki, A.;
Lamarre, J. -M.;
Lasenby, A.;
Laureijs, R. J.;
Lawrence, C. R.;
Leahy, J. P.;
Leonardi, R.;
LeÓÃn-Tavares, J.;
Lesgourgues, J.;
Li, C.;
Liddle, A.;
Liguori, M.;
Lilje, P. B.;
Linden-VÓÈrnle, M.;
LÓÃpez-Caniego, M.;
Lubin, P. M.;
MacÓ-as-PÓ?rez, J. F.;
MacTavish, C. J.;
Maffei, B.;
Maino, D.;
Mandolesi, N.;
Maris, M.;
Marshall, D. J.;
Martin, P. G.;
MartÓ-nez-GonzÓÅlez, E.;
Masi, S.;
Massardi, M.;
Matarrese, S.;
Matthai, F.;
Mazzotta, P.;
Mei, S.;
Meinhold, P. R.;
Melchiorri, A.;
Melin, J. -B.;
Mendes, L.;
Mennella, A.;
Migliaccio, M.;
Mikkelsen, K.;
Mitra, S.;
Miville-DeschÓ?nes, M. -A.;
Moneti, A.;
Montier, L.;
Morgante, G.;
Mortlock, D.;
Munshi, D.;
Murphy, J. A.;
Naselsky, P.;
Nati, F.;
Natoli, P.;
Nesvadba, N. P. H.;
Netterfield, C. B.;
NÓÈrgaard-Nielsen, H. U.;
Noviello, F.;
Novikov, D.;
Novikov, I.;
O'Dwyer, I. J.;
Olamaie, M.;
Osborne, S.;
Oxborrow, C. A.;
Paci, F.;
Pagano, L.;
Pajot, F.;
Paoletti, D.;
Pasian, F.;
Patanchon, G.;
Pearson, T. J.;
Perdereau, O.;
Perotto, L.;
Perrott, Y. C.;
Perrotta, F.;
Piacentini, F.;
Piat, M.;
Pierpaoli, E.;
Pietrobon, D.;
Plaszczynski, S.;
Pointecouteau, E.;
Polenta, G.;
Ponthieu, N.;
Popa, L.;
Poutanen, T.;
Pratt, G. W.;
PrÓ?zeau, G.;
Prunet, S.;
Puget, J. -L.;
Rachen, J. P.;
Reach, W. T.;
Rebolo, R.;
Reinecke, M.;
Remazeilles, M.;
Renault, C.;
Ricciardi, S.;
Riller, T.;
Ristorcelli, I.;
Rocha, G.;
Rosset, C.;
Roudier, G.;
Rowan-Robinson, M.;
RubiÓÁo-MartÓ-n, J. A.;
Rumsey, C.;
Rusholme, B.;
Sandri, M.;
Santos, D.;
Saunders, R. D. E.;
Savini, G.;
Schammel, M. P.;
Scott, D.;
Seiffert, M. D.;
Shellard, E. P. S.;
Shimwell, T. W.;
Spencer, L. D.;
Starck, J. -L.;
Stolyarov, V.;
Stompor, R.;
Sudiwala, R.;
Sunyaev, R.;
Sureau, F.;
Sutton, D.;
Suur-Uski, A. -S.;
Sygnet, J. -F.;
Tauber, J. A.;
Tavagnacco, D.;
Terenzi, L.;
Toffolatti, L.;
Tomasi, M.;
Tristram, M.;
Tucci, M.;
Tuovinen, J.;
TÓÌrler, M.;
Umana, G.;
Valenziano, L.;
Valiviita, J.;
Van Tent, B.;
Vibert, L.;
Vielva, P.;
Villa, F.;
Vittorio, N.;
Wade, L. A.;
Wandelt, B. D.;
White, M.;
White, S. D. M.;
Yvon, D.;
Zacchei, A.;
Zonca, A.
Submitted: 2013-03-20, last modified: 2014-03-28
We describe the all-sky Planck catalogue of clusters and cluster candidates
derived from Sunyaev--Zeldovich (SZ) effect detections using the first 15.5
months of Planck satellite observations. The catalogue contains 1227 entries,
making it over six times the size of the Planck Early SZ (ESZ) sample and the
largest SZ-selected catalogue to date. It contains 861 confirmed clusters, of
which 178 have been confirmed as clusters, mostly through follow-up
observations, and a further 683 are previously-known clusters. The remaining
366 have the status of cluster candidates, and we divide them into three
classes according to the quality of evidence that they are likely to be true
clusters. The Planck SZ catalogue is the deepest all-sky cluster catalogue,
with redshifts up to about one, and spans the broadest cluster mass range from
(0.1 to 1.6) 10^{15}Msun. Confirmation of cluster candidates through comparison
with existing surveys or cluster catalogues is extensively described, as is the
statistical characterization of the catalogue in terms of completeness and
statistical reliability. The outputs of the validation process are provided as
additional information. This gives, in particular, an ensemble of 813 cluster
redshifts, and for all these Planck clusters we also include a mass estimated
from a newly-proposed SZ-mass proxy. A refined measure of the SZ Compton
parameter for the clusters with X-ray counter-parts is provided, as is an X-ray
flux for all the Planck clusters not previously detected in X-ray surveys.
[3]
oai:arXiv.org:1006.3060 [pdf] - 189519
Doppler images of the RS CVn binary II Pegasi during the years 1994-2002
Submitted: 2010-06-15
We publish 16 Doppler imaging temperature maps for the years 1994-2002 of the
active RS CVn star II Peg. The six maps from 1999-2002 are based on previously
unpublished observations. Through Doppler imaging we want to study the spot
evolution of the star and in particular compare this with previous results
showing a cyclic spot behaviour and persistent active longitudes. The
observations were collected with the SOFIN spectrograph at the Nordic Optical
Telescope. The temperature maps were calculated using a Doppler imaging code
based on Tikhonov regularization. During 1994-2001, our results show a
consistent trend in the derived longitudes of the principal and secondary
temperature minima over time such that the magnetic structure appears to rotate
somewhat more rapidly than the orbital period of this close binary. A sudden
phase jump of the active region occured between the observing seasons of 2001
and 2002. No clear trend over time is detected in the derived latitudes of the
spots, indicating that the systematic motion could be related to the drift of
the spot generating mechanism rather than to differential rotation. The derived
temperature maps are quite similar to the ones obtained earlier with a
different methods, the main differences occurring in the spot latitudes and
relative strength of the spot structures. We observe both longitude and
latitude shifts in the spot activity of II Peg. However, our results are not
consistent with the periodic behaviour presented in previous studies.
[4]
oai:arXiv.org:astro-ph/0411481 [pdf] - 69080
High Resolution Spectroscopy of the high galactic latitude RV Tauri star
CE Virginis
Submitted: 2004-11-17
Analysis of the surface composition of the suspected cool RV Tauri star CE
Vir shows no systematic trend in depletions of elements with respect to
condensation temperature. However, there is a significant depletion of the
elements with respect to the first ionization potential of the element. The
derived Li abundance of log $\epsilon$ (Li) = 1.5$\pm$0.2 indicates production
of Li in the star. Near infrared colours indicate sporadic dust formation close
to the photosphere.
[5]
oai:arXiv.org:astro-ph/9708200 [pdf] - 98378
The Planetary Nebula Luminosity Function of M87 and the Intracluster
Stars of Virgo
Submitted: 1997-08-21
We present the results of a wide-field [O III] $\lambda 5007$ survey for
planetary nebulae (PN) in M87 and its surrounding halo. We show that the
planetary nebula luminosity function (PNLF) of M87's halo is unlike any PNLF
observed to date, with a shape that differs from that of the empirical law at
the 99.9% confidence level. In addition, we find that the PNLF of M87's outer
halo differs from that of the galaxy's inner regions at a high degree of
certainty ($\sim 92%$). We show that both these effects are most likely due to
the existence of intracluster PN, many of which are foreground to M87. These
intracluster objects explain the ``overluminous'' [O III] $\lambda 5007$
sources previously identified by Jacoby, Ciardullo, & Ford (1990), and present
us with a new tool with which to probe the morphological and dynamical
properties of the cluster. By modifying the maximum likelihood procedures of
Ciardullo et al (1989a) and using an assumed M31 distance of 770 Kpc (Freedman
& Madore 1990), we derive a distance modulus to M87 of $30.79 \pm 0.16$ ($14.4
\pm 1.1$ Mpc).